
1

Scheduling Strategies for Mixed Workloads
in Multimedia Information Servers*

G. Nerjes1, P. Muth2, M. Paterakis3,
 Y. Romboyannakis3, P. Triantafillou3, G. Weikum2

1 Swiss Federal Institute of Technology
Institute of Information Systems

CH-8092 Zurich, Switzerland
nerjes@inf.ethz.ch

2 University of the Saarland
Department of Computer Science
D-66041 Saarbrücken, Germany
{muth,weikum}@cs.uni-sb.de

 3 Technical University of Crete
Department of Electronics &

Computer Engineering, Chania, Greece
{pateraki,peter,rombo}@ced.tuc.gr

Abstract

In contrast to pure video servers, advanced
applications such as digital libraries or teleteaching
exhibit a mixed workload with massive access to
conventional, ‘‘discrete’’ data such as text documents,
images and indexes as well as requests for “continuous
data”. In addition to the service quality guarantees for
continuous data requests, quality–conscious applications
require that the response time of the discrete data requests
stay below some user–tolerance threshold. In our paper, we
study the impact of different disk scheduling policies on the
service quality for both continuous and discrete data. We
identify a number of critical issues, present a framework for
describing the various policies in terms of few parameters
and finally provide experimental results, based on a
detailed simulation testbed, that compare different
scheduling policies.

1 Introduction

1.1 Service Quality and Server Architecture for
Continuous Data Load

Quality of service requirements for ‘‘continuous’’ data
like video and audio pose challenging performance
demands on a multimedia information server. In particular,
the delivery of such data from the server to its clients
dictates disk-service deadlines for real-time playback at
the clients. Missing a deadline may result in a temporary,
but possibly user-noticeable degradation of the playback
that we refer to as a ‘‘glitch’’. Guaranteeing a specified
quality of service then means to avoid glitches or to bound
the glitch rate within a continuous data stream, possibly in a
stochastic manner (i.e., with very high probability). In

addition, an important objective for the server is to
maximize the number of continuous data streams that can
be sustained by the system without violating the promised
glitch rate bound.

For this setting, a specific data placement and disk
scheduling method has evolved in the literature as the
method of choice [1, 2, 3, 4, 5, 6, 7, 8]. A continuous data
object, e.g., a video, is partitioned into fragments of
constant time length, say 1 second of display. These
fragments are then spread across a number of disks in a
round-robin manner such that each fragment resides on a
single disk. Such a coarse-grained striping scheme allows a
maximum number of concurrent streams for a single object
(i.e., regardless of skew in the popularity of objects), while
also maximizing the effective exploitation of a single
disk’s bandwidth (i.e., minimizing seek and rotational
overhead). Furthermore, the fact that all fragments have
the same time length makes it easy to support data with
variable-bit-rate encoding (e.g., MPEG-2) and simplifies
the disk scheduling as follows. The periodic delivery of the
fragments of the ongoing data streams is organized in
rounds whose length corresponds to the time length of the
fragments. During each round, each disk must retrieve
those of its fragments that are needed for a client’s playback
in the subsequent round. Not being able to fetch all the
necessary fragments by the end of a round is what causes a
glitch. On the other hand, since the ordering of the fragment
requests within a round can be freely chosen, the disk
scheduling can and should employ a SCAN policy [9] (also
known as ‘‘elevator’’ or ‘‘sweep’’ policy) that minimizes
seek times.

Various analytic models have been developed in the
literature for the above scheduling method. Their role is to
derive, from the data and disk parameters, the maximum

* This work has been supported by the ESPRIT Long Term Research
Project HERMES.

In Proceedings of the IEEE International Workshop on Research Issues in Data Engineering (RIDE’98), Orlando, Florida, February 1998



2

number of concurrent data streams that a single disk can
sustain without risking glitches or exceeding a certain
probability that glitches become non-negligible. These
predictions are based on either worst-case assumptions on
the various parameters (e.g., data fragment size, rotational
latency of the disk, etc.) [6], or different forms of stochastic
modeling (e.g., assuming a probability distribution for the
data fragment size) [10, 11, 12]. In the latter case, which is
similar to ‘‘statistical multiplexing’’ in ATM switches, a
service quality guarantee could take the following form:
the probability that a continuous data stream with r rounds
exhibits more than 0.01 * r glitches is less than 0.001.

For given requirements of this form, the analytic
performance model then serves to configure the server
(i.e., compute the required number of disks for a given
load) and to drive the server’s run-time admission control.

1.2 Support for Discrete Data Load and Mixed
Workload Service Quality

In contrast to pure video servers, advanced
applications such as digital libraries or teleteaching exhibit
a mixed workload with massive access to conventional,
‘‘discrete’’ data such as text documents and images as well
as index-supported searching in addition to the requests for
continuous data. Furthermore, with unrestricted 24-hour
world-wide access over the Web, such multimedia servers
have to cope with a dynamically evolving workload where
the fractions of continuous-data versus discrete-data
requests vary over time and cannot be completely predicted
in advance. Thus, for a good cost/performance ratio it is
mandatory that a server operates with a shared resource
pool rather than statically partitioning the available disks
and memory into two pools for continuous and discrete
data, respectively.

In addition to the service quality guarantees for
continuous data requests, quality-conscious applications
require that the response time of the discrete data requests
stay below some user-tolerance threshold, say one or two
seconds. This requirement has been largely ignored in prior
work on multimedia information servers where the
performance of discrete-data requests often appears to be
an afterthought at best. Among the few exceptions are the
Fellini project [13, 6] which allows reserving a certain
fraction of a disk service round for discrete data requests,
and the Hermes project [14, 15] which has aimed to derive
stochastic models to support the configuration of a mixed
workload server (i.e., the number of required disks). In the
latter approach, a stochastic bound for the continuous-data
glitch rate (see above) is combined with a discrete-data
performance goal of the following form: the probability
that the response time of a discrete data request exceeds 2
seconds is less than 0.001.

1.3 Contribution and Outline of the Paper

While the above mentioned prior work has shown
increasing awareness of mixed workloads and a
comprehensive notion of service quality, the actual disk
scheduling for the two classes of requests has been
disregarded or ‘‘abstracted away’’ because of its analytical
intractability. In this paper, we study the impact of different
disk scheduling policies on the service quality for both
continuous and discrete data. In doing so, we use a
round-based scheduling paradigm as our starting point, as
this is still the best approach to deal with discretized
continuous data streams. Also, this approach allows us to
concentrate on a single disk, for our framework ensures
independence among disks and linear scalability in the
number of disks. Our focus here is on the details of how
continuous and discrete data requests are scheduled within
a round. The contribution of the paper is twofold:
• We identify a number of critical issues in the disk

scheduling policy, and present a framework for
describing the various policies in terms of few
parameters.

• We provide experimental results, based on a detailed
simulation testbed, that compare different scheduling
policies, and derive recommendations for a method of
choice in different load scenarios.

The rest of the paper is organized as follows. Section 2
introduces different issues in the scheduling of mixed
workloads, and organizes them into a framework. Section 3
provides a qualitative discussion of the benefits and
drawbacks of the various scheduling policies, aiming to
prune the space of worthwhile policies. Section 4 then
presents preliminary simulation results for the most
promising scheduling policies.

2 Scheduling Strategies

We consider a single disk which has to serve N
concurrent continuous-data streams per scheduling round,
and also has to sustain discrete-data requests that arrive
according to a Poisson process with rate � (i.e.,
exponentially distributed time between successive
arrivals, with a mean interarrival time 1/�). In the
following, we refer to fetching a continuous-data fragment
as a C-request and to a discrete-data request as a D-request.
The scheduling has several degrees of freedom along the
following dimensions:
(1) Service Period Policy: We can either serve C-requests

and D-requests together in an arbitrarily interleaved
manner (mixed policy), or separate the service of
C-requests and D-requests into two disjoint periods
(disjoint policy) within each round. In the latter case, a
prioritization of a request class, i.e., C-requests vs.
D-requests, is possible by ordering the C-period before



3

the D-period or vice versa. In addition, we can break a
round down into a specified number of subrounds.
Subrounds can again use a mixed policy or can be
partitioned into disjoint C- and D-periods.

(2) Limitation Policy: Only a limited number of C-requests
and D-requests can be served in each round. We can
either specify a limit on the number of requests of a
given class served in a (sub)round (number limit), or on
the length of the period assigned to each class of
requests (time limit). The last period in each round is
always time-limited by the beginning of the next round.

(3) Request Selection and Queue Ordering Policy: Within
each (sub)round or period, we can select a set of
requests to be included into the disk queue (up to a limit
as defined in (2)), and arrange them in a specific
execution order. Among the many possible ordering
criteria discussed in the literature (see, e.g. [16, 17, 9]),
a first-come-first-served (FCFS) order is reasonable
whenever fairness is an issue and the variance of the
response time (for D-requests) is critical. On the other
hand, a SCAN policy minimizes seek overhead and thus
achieves better throughput results.

The following Subsections 2.1 through 2.3 discuss these
scheduling dimensions in more detail. Subsection 2.4 then
puts everything together in organizing the various options
into a common framework.

2.1 Service Period Policy

Given the real-time nature of the C-requests, the most
obvious approach is to break down the entire service round
into a C-period during which all N C-requests are served,
and a D-period for the D-requests. We refer to this policy,

which has been assumed (but not further analyzed) in our
earlier work [14], as a disjoint policy.

Since C- and D-periods always alternate over an
extended time period, it may seem that the order of these
two periods within a round is not an issue. However, this
order has a certain impact on the service quality of the two
classes. Namely, picking the C-period as the first part of a
service round, the probability of glitches can be minimized
or even eliminated by dynamically extending the C-period
if necessary and shortening the D-period accordingly. If, on
the other hand, the D-period is placed first, the risk is higher
that the C-period needs to be truncated by the end of the
round.

Figure 1 illustrates the disjoint policy with the
C-period preceding the D-period. Time progresses from
left to right. The end of each round is marked by a long
vertical line, short vertical lines separate C-periods and
D-periods. C-requests are represented as lightly shaded
boxes, D-requests as dark shaded boxes. White boxes
indicate idle periods with no request served. Each C-period
serves N=4 C-requests (in variable order depending, e.g.,
on seek positions). We show the timepoints when
D-requests arrive and when they depart after their
execution is completed by means of arcs. D-requests are
identified by numbers. The timespan between the arrival
and the departure of a D-request is the response time of that
request. The figure contains cases where a D-request that
arrives during the C-period is delayed until the subsequent
D-period, e.g., requests 4 and 5, and also cases where this
delay spans more than one round because of a temporary
load peak for D-requests (many arrivals and/or large
requests and thus long service times), e.g., requests 9 and
10.

C4

1 2 3

1 2 3

4 5

4 5

6

6

7 8 9 10

7 8

arrivals of 
D-requests

departures 
(completed 
D-requests)

C-period D-period

one round

C1 1 32 4 5 6 7 8

Figure 1: Execution Scenario with Disjoint C- and D-periods

C2C3 C4 C1C2 C3 C4 C1 C2 C3

idle
time

...

The biggest drawback of the 2-period scheme is that it
may delay D-requests for a long time. Even if the D-request
arrival rate is low (so that there is no real contention among
the D-requests), a D-request that has the bad luck to arrive
early in the C-period needs to wait for almost the entire
C-period. Depending on the total round length and its
C-period fraction, such a delay may be user-noticeable. An
idea to alleviate this situation is to break down the entire
C-period into a fixed number of C-periods and interleave

these C-periods with shorter D-periods. We refer to a
successive pair of C- and D-period as a subround. The
difference between a subround and the entire round is that
all C-requests need to be served within the round, but only a
fraction of them is relevant for a subround. The number of
subrounds per round should be a tuning parameter, where
the value 1 corresponds to the initial 2-period scheme.

Figure 2 illustrates the disjoint policy with 2 subrounds
per round. Note that the more fine-grained interleaving of



4

C- and D-periods on a per subround basis improves the
response time of some D-requests, e.g., requests 4 and 5,
which now have to wait only for the end of one

C-subround-period rather than the C-period of an entire
round.

1 2 3

1 2 3

4 5

4 5

6

6

7 8 9 10

7 8

arrivals of 
D-requests

departures 
(completed 
D-requests)

� �

one round

C1 C2 C1 C2 C4 C3 C3 C21 32 4 5 6 7 8C3 C4 C4 C1

� �

1st subround 2nd subround

Figure 2: Execution Scenario with Disjoint C- and D-periods and 2 Subrounds per Round

...

6

The major alternative to this separation of C- and
D-periods is to combine both request classes into a
common disk queue, using a mixed policy. This approach is
beneficial for the D-requests as they have a chance to be
served earlier. D-requests that arrive during what used to be
the C-period do not necessarily have to wait until the end of
the C-period. Whether this is actually the case for a given
D-request arrival depends on the details of how requests are

ordered in the common disk queue, as discussed in
Subsection 2.3.

A possible execution schedule for the scenario of
Figure 1 with a mixed policy is illustrated in Figure 3. Note
that some of the D-requests, e.g., requests 4 and 5, now
have a shorter response time, compared to the execution
scenario in Figure 1.

...

1 2 3

1 2 3

4 5

4 5

6

C3

7 8 9 10

7 8

arrivals of 
D-requests

departures 
(completed 
D-requests)one mixed round

C1 C2 C3 C4 C1 C2 C4C3 C2

6

C4C11 32 4 5 6 7 8

Figure 3: Execution Scenario with Mixed Service Periods

2.2 Limitation Policy

Only a limited number of C-requests and D-requests
can be served in each round. Assigning different limits to
each class of requests allows us to tune the system between
the two classes. We consider two kinds of limits:

• a number limit, i.e., an upper bound for the number of
requests of a given class served during a (sub)round

• a time limit, i.e., an upper bound for the time available to
serve the requests of a given class within a (sub)round.

Number Limit
In general, the number of C-requests to be served in a

round is number-limited by N. When using subrounds, we
distribute the C-requests uniformly over the subrounds.
The number N of C-requests should be determined by the
admission control so that the total service time for the N
C-requests is smaller than the entire round length (or period
length if the C-period is time-limited). If the admission

control is based on a stochastic model, then this inequality
holds with very high probability. In the unlikely event that
glitches are inevitable, smoothful degradation policies can
be devised along the lines of [18, 19].

Obviously, the resource consumption by D-requests
can adversely affect the glitch rate of C-requests as well,
down to the point where no guarantees about glitch rates
can be given anymore. Therefore, it is advisable that the
number of D-requests that are considered for execution
within a (sub)round be also limited. Limiting the number of
D-requests can be done

• statically based on a stochastic model for their disk
service time, similar to the admission control of
C-requests, or

• dynamically by computing the total disk service time for
the D-requests at the beginning of each (sub)round.

In the first case, we obtain a static limit which is constant
for all rounds until the global load parameters change and
the stochastic model is re-evaluated. In the second case, the



5

number limit for D-requests can vary from round to round,
depending on the actual request sizes, etc.

Time Limit
Instead of imposing a limit on the number of requests

served for a given class, we can limit the time spent for
serving requests of this class in a round. For example,
assuming a round length of 1 second, we could dedicate 0.6
seconds to the C-period and 0.4 seconds to the D-period.
Obviously, this only makes sense for the disjoint policy
with separate periods assigned to each class. A time limit
can be specified based on the desired disk load ratio
between C-request and D-requests. Ideally, this ratio would
be derived from the specified performance and service
quality goals of the application, under the assumption that
the disk system configuration is indeed able to satisfy these
goals. Configuration methods along these lines have been
studied in [14, 15]. In the current paper, we assume the
length of the periods to be given.

Analogously to a number-limit specification, the time
limit for a service period can be chosen statically, i.e., with
a fixed upper bound such as 0.6 seconds, or dynamically on
a per (sub)round basis. In the latter case, for example, the
time limit for the D-request service period could be chosen
depending on the D-request sizes, the time already
consumed by the C-period, etc. Thus, a dynamic time limit
essentially has the same flexibility and achieves the same
net effect as a dynamic number limit. We therefore unify
the two dynamic cases into a dynamic limitation policy,
where the resulting number and time limits for a round are
merely dual views of the same load limitation.

2.3 Request Selection and Queue Ordering
Policy

At the beginning of each (sub)round, the disk
scheduler considers the entire set of requests that are
known at this point. When number limits (in the sense of
Section 2.2) are in effect and some requests must be held
back, the scheduler first determines a subset of requests to
be included into the disk queue for the next (sub)round. We
refer to this decision as the request selection policy. As for
the C-requests, the choice is uncritical as long as all N
requests are guaranteed to be scheduled within one of the
subrounds of the entire round. For D-requests, we advocate
a selection policy based on the arrival time of the requests
for fairness reasons. So the subset of “lucky” D-requests
should always be chosen in FCFS order. Otherwise, it
would be hard if not infeasible to prevent the potential
starvation of D-requests.

When the set of requests is selected, the disk scheduler
needs to arrange them in a certain service order. In our

specific setting, there are two attractive options for this
queue ordering policy:
• In a SCAN ordering, the requests in the queue are ordered

with regard to their disk seek positions, relative to the
innermost or outermost cylinder or the current disk arm
position. This policy aims to maximize the effectively
exploited disk bandwidth by minimizing seek times.

• In a FCFS ordering, requests are ordered based on their
arrival time. All C-requests have the same arrival time,
namely, the startpoint of the round. The main incentive
for a FCFS scheme would be that it provides a certain
fairness among requests, often resulting in a smaller
variance of the response time compared to other,
‘‘unfair’’ ordering policies.

D-requests may arrive during a (sub)round, and if the given
limit on the number of D-requests is not exceeded, it may
be beneficial to include them dynamically into the ordering
of requests in the (sub)round. We call this an incremental
queue ordering policy. When SCAN is used for the initial
ordering of requests, a newly arriving D-request can be
merged into the SCAN ordering if its seek position is still
ahead of the current disk arm position. Otherwise, the
request is either placed at the end of the list of D-requests to
be served in the current (sub)round, i.e., after the disk
sweep, or it is considered only at the beginning of the next
(sub)round. When more than one request is postponed in
this manner, one actually needs a subsidiary policy for
ordering the postponed requests, provided that they can
still be served within the same service period. For
simplicity, we assume that this subsidiary policy is the
same as the primary queue ordering criterion. So, for
SCAN ordering, postponed requests would be combined
into a second disk sweep.

2.4 Putting Everything Together

The various scheduling dimensions that we discussed
in the previous subsections can be combined into a
common framework where scheduling policies can be
described in terms of only few parameters. These
parameters and their possible settings are as follows:
(1) A specification for the service period policy. Possible

choices are (a) disjoint periods with the C-period
preceding the D-period, (b) disjoint periods with the
D-period preceding the C-period, or (c) mixed periods.

(2) The number of subrounds per round, where 0 denotes a
mixed round without separate periods, and 1
corresponds to the standard 2-period case without
subrounds.

(3) A specification of the limitation policy. Possible
choices are (a) a static number limit, (b) a static time
limit, or (c) a dynamic limitation for each (sub)round.

(4) A specification of the request selection and queue
ordering policy. For the selection of D-requests, we



6

consider only FCFS. For the queue ordering, possible
settings for this parameter are (a) SCAN for the
C-requests combined with FCFS for D-requests, (b)
SCAN for the C-requests combined with SCAN for the
D-requests, or (c) SCAN for the C-requests combined
with incremental SCAN for the D-requests.

3 Qualitative Assessment

In this section we briefly discuss the pros and cons of
the various scheduling policies that one may construct
from the framework of Section 2. Our goal is to restrict the
space of “promising” policies to a small set for further
experimental study.

First of all, we observe that the dynamic limitation
policy, where either the number of requests or total service
time of a service period is chosen dynamically based on
request parameters, is strictly superior to a static number or
time limit. A possible advantage of the static limitation
policies would be that they need no on-line information
about current load parameters and can therefore be
implemented with virtually no bookkeeping overhead.
However, there is evidence that this overhead is negligible,
and we disregard overhead issues in this paper. Hence we
consider the dynamic limitation as the method of choice.

Second, among the two disjoint service period
policies, we favor the one with C-periods preceding
D-periods for the following reason. As we do not have a
static time limit for the C-period, we can always allow all
C-requests of a (sub)round to complete and adjust the
remaining D-period dynamically. In other words, the risk
of having glitches in continuous-data streams is
minimized. So the design decision expresses a
prioritization of C-requests over D-requests, and this seems
to be in line with the design rationale of most multimedia
applications that include video/audio clips.

Finally, we strongly advocate the choice of FCFS for
the request selection policy to prevent starvation (as
already mentioned in Section 2.3). Furthermore, we can
narrow down the space of interesting queue ordering
policies by observing that the incremental SCAN policy is
strictly superior to the “gated” SCAN policy where the
disk-arm sweep consists only of requests that have arrived
before the sweep begins.

So altogether, this qualitative discussion leaves us
with the following scheduling policies that we consider
worthwhile to be studied experimentally:

a) disjoint with incremental FCFS: disjoint service
periods with the C-period with SCAN service
preceding the D-period, a dynamic limitation of
D-requests, and incremental FCFS queue ordering for
the D-requests,

b) disjoint with incremental SCAN: the same policy
except that the D-request queue is ordered (and
dynamically re-ordered) by the incremental SCAN
policy,

c) mixed with incremental SCAN: a mixed service period
with a dynamic limitation of D-requests and an
incremental SCAN policy for both C- and D-requests.

We will present some additional implementation details,
especially for policy c), in Section 4. Note that for all three
policies, the number of subrounds is still a degree of
freedom. In this paper, however, we restrict ourselves to
setting this parameter to one; so we do not further consider
non-trivial subrounds here.

4 Simulation Experiments

4.1 Testbed

Our testbed simulates a storage system with five disks.
Relevant disk parameters are given in Table 1. These
values reflect the characteristics of modern disk drives.
transfer rate 8.79 MBytes / s
revolution time 8.34 ms
seek-time function

seek (d) ��1.867 * 10–3 � 1.315 * 10–4 d�

3.8635 * 10–3 � 2.1 * 10–6 d

; d � 1344

; d � 1344

number of cylinders 6720

Table 1: Disk Characteristics

It is assumed that for each disk there is a constant
number N of C-requests that must be served in each round.
The round length is set to one second, and subrounds are
disregarded (i.e., the the subround parameter is set to 1).
The data characteristics for C- and D-requests are given in
Table 2. The values for C-requests reflect typical data
characteristics of MPEG-2 data with a mean bandwidth of
6.1Mbit/s. The sizes of D-requests are typically smaller
and obey a normal distribution. The arrival of D-requests is
driven by a Poisson process with arrival rate �, and it is
assumed that the arriving D-requests are distributed
uniformly over the disks.

C-request size
(gamma distributed)

mean
variance

800000 Bytes
(200000)2

D-request size
(normal distributed)

mean
variance

50000 Bytes
(25000)2

Table 2: Data Characteristics

4.2 Results

We compared the three scheduling policies that we
identified as the most promising ones in Section 3: (a)
disjoint with incremental FCFS, (b) disjoint with



7

Figure 4: Mean Response Time of D-requests

incremental SCAN, (c) mixed with incremental SCAN.
The performance metrics of interest are the maximum
sustainable throughput of D-requests (for a given C-load)
and mean response times of D-requests. All three
scheduling policies prevent glitches in C-data streams
(unless the C-requests alone exceed the entire round length,
which is extremely unlikely for our workload parameter
settings and did never occur in the experiments).

Figure 4 shows the mean response times of D-requests
for different arrival rates of D-requests and different
numbers N of C-requests (3 or 7) to be served in a round.
Serving 3 C-requests per round results in about 30% of the
total round time occupied by C-requests on average,
serving 7 C-requests per round results in about 70%. In
order to implement the dynamic limitation policy, the total
disk service time of all C-requests and D-requests in a
round is computed at the beginning of each round based on
the disk characteristics shown in Table 1. Unlike at the
timepoint when a new C-data stream is admitted (or
rejected), all request parameters are exactly known. Only
the rotational delays for the various requests cannot be
perfectly predicted. In our simulations, we have used a
worst case bound by assuming that each request waits for a
full disk revolution. This leads to an overestimation of the
total disk service time, but it eliminates the possibility of
glitches in C-data streams as it guarantees that all
C-requests scheduled in a round are completed before the
end of the round. Note that the incremental scheduling of
D-requests prevents the conservative estimation from
causing unnecessary disk idle time. When a service period
ends earlier than predicted, the remaining time is still used
by additional D-requests (unless the D-request queue is

empty and stays empty until the end of the round). Better
predictions can be devised, based on Chernoff bounds [20]
for the tail of the distribution of the accumulated rotational
delays (see [12] for an analytical model along these lines).

Figure 4 shows that the mixed service policy is
superior under all settings. In fact, this clear result is not
that unexpected, for the mixed policy does not force
D-requests that arrive during the C-period to wait until the
end of the C-period. The maximum sustainable throughput
is almost independent of choosing a disjoint or mixed
policy. The important parameter here is the request
selection and queue ordering policy. Using a SCAN policy
is superior to FCFS. The reason is that the SCAN policy
saves seek time compared to the FCFS policy, which allows
more D-requests to be served in a round.

For low arrival rate of D-requests, the response times
of the two policies with disjoint service periods are similar.
The reason is that under light D-load, the number of
requests in a disk arm sweep is small. Due to the dynamic
and incremental inclusion of newly arriving D-requests
into the set of D-requests to be served in a round, a light
D-load results in several SCANs executed during the
round. In this case, the SCAN policy with incremental
queue ordering degenerates towards a FCFS policy.

Between the two disjoint-period policies, FCFS did
not offer real benefits in terms of response time variance
either. This was not in line with our expectations, but the
explanation is that for our workload characteristics seek
times were a significant factor of the disk service time per
request, and the minor “unfairness” of the SCAN policy
was more than made up by the reduction of the disk service
time. For much larger requests, where seek times become



8

an insignificant factor, FCFS may outperform SCAN in
terms of response time variance, but this would require
request sizes in the order of Megabytes.

5 Conclusion

To the best of our knowledge, this is the first paper that
provides a systematic discussion and comparison of
scheduling strategies for mixed-workload multimedia
servers. Our performance results have shown that a policy
that mixes C-requests and D-requests within a scheduling
round is superior to approaches that separate service
periods for C- and D-requests. The developed policy is still
able to avoid glitches for the C-data streams, by
dynamically limiting the number of D-requests that are
served in a scheduling round, while making the best
possible use of the remaining disk time for good response
time of D-requests.

Future work will mostly focus on developing
analytical underpinnings to predict the performance of
mixed scheduling algorithms, given the various workload
parameters. This will continue our earlier work on server
configuration [14, 15] by replacing the previously used
simple two-period scheduling policy with the much more
elaborated mixed scheduling policy developed in the
current paper. An accurate, analytical performance
prediction is needed as the basis for a system configuration
tool that should serve two purposes: 1) determining the
number of disks needed for a multimedia server with a
given workload and specified service quality goals, and 2)
dynamically adjusting admission control and load
distribution parameters at run-time. Work along these lines
is of high practical relevance as it allows a service provider
to offer multimedia server facilities with guaranteed
service quality at minimal cost, making the best use of the
available resources, also in case of dynamically evolving
workloads.

6 References

[1] Steven Berson, Shahram Ghandeharizadeh, Richard Muntz,
Staggered Striping in Multimedia Information Systems.
Proceedings ACM SIGMOD Conference 1994, International
Conference on Management of Data, Minneapolis, Minnesota,
pp.79-90, May 1994.

[2] Mon-Song Chen, Dilip D. Kandlur, Philip S. Yu, Optimization
of the Grouped Sweeping Scheduling (GSS) with Heterogenous
Multimedia Streams, Proceedings of the ACM International
Conference on Multimedia, ACM Multimedia ’93, Anaheim, CA,
1993.

[3] D. James Gemmel, Jiawei Han, Richard Beaton, Stavros
Christodoulakis, Delay-Sensitive Multimedia on Disks, IEEE
Multimedia, pp. 57-67, 1995.

[4] D. James Gemmel, Harrick M. Vin, Dilip D. Kandlur, P. Venkat
Rangan, Lawrence A. Rowe, Multimedia Storage Servers: A
Tutorial, IEEE Computer, pp. 40-49, May 1995.

[5] Shahram Ghandeharizadeh, Seon Ho Kim, Cyrus Shahabi, On
Disk Scheduling and Data Placement for Video Servers, ACM
Multimedia Systems, 1996.

[6] Banu Özden, Rajeev Rastogi, Avi Silberschatz, Disk Striping in
Video Server Environments, Proceedings IEEE International
Conference on Multimedia Computing and Systems, June 1996.

[7] Peter Triantafillou, Christos Faloutsos, Overlay Striping for
Optimal Parallel I/O in Modern Applications, Parallel Computing
Journal, Special Issue on Parallel Data Servers and Applications,
1998, to appear.

[8] Fouad A. Tobagi, Joseph Pang, Randall Baird, Mark Gang,
Streaming RAID - A Disk Array Management System for Video
Files, ACM Multimedia Conference, 1993.

[9] Abraham Silberschatz, Peter Galvin, Operating System
Concepts, 4th edition, Addison-Wesley, New York, 1994.

[10] Harrick M. Vin, Pawan Goyal, Alok Goyal, Anshuman Goyal,
A Statistical Admission Control Algorithm for Multimedia Servers,
ACM Multimedia Conference, 1994.

[11] Ed Chang, Avideh Zakhor, Cost Analyses for VBR Video
Servers, Proceedings of IS&T/SPIE International Symposium on
Electronic Imaging: Science and Technology, San Jose, California,
January 1996.

[12] Guido Nerjes, Peter Muth, Gerhard Weikum, Stochastic
Service Guarantees for Continuous Data on Multi-Zone Disks,
Proceedings ACM Symposium on Principles of Database Systems
(PODS), Tucson, Arizona, 1997.

[13] Cliff Martin, P.S. Narayan, Banu Özden, Rajeev Rastogi, Avi
Silberschatz, The Fellini Multimedia Storage Server, in: Soon M.
Chung (Editor), Multimedia Information Storage and
Management, Kluwer, 1996.

[14] Guido Nerjes, Peter Muth, Gerhard Weikum, Stochastic
Performance Guarantees for Mixed Workloads in a Multimedia
Information System, Proceedings IEEE International Workshop on
Research Issues in Data Engineering, Birmingham, UK, 1997.

[15] Guido Nerjes, Yannis Romboyannakis, Peter Muth, Michael
Paterakis, Peter Triantafillou, Gerhard Weikum, On
Mixed-Workload Multimedia Storage Servers with Guaranteed
Performance and Service Quality, Proceedings 3rd International
Workshop on Multimedia Information Systems, Como, Italy, 1997.

[16] Robert Geist, Stephen Daniel, A Continuum of Disk Scheduling
Algorithms, ACM Transactions on Computer Systems Vol.5 No.1,
February 1987, pp. 77-92.

[17] Bruce L. Worthington, Gregory R. Ganger, Yale N. Patt,
Scheduling Algorithms for Modern Disk Drives, Proceedings ACM
SIGMETRICS Conference, 1994.

[18] Heiko Thimm, Wolfgang Klas, Crispin Cowan, Jonathan
Walpole, Calton Pu, Optimization of Adaptive Data-Flows for
Competing Multimedia Presentational Database Sessions,
Proceedings IEEE International Conference on Multimedia
Computing and Systems, Ottawa, Canada, 1997.

[19] Silvia Hollfelder, Achim Kraiss, Thomas Rakow, A
Client-controlled Adaptation Framework for Multimedia
Database Systems, Proceedings European Workshop on Interactive
Distributed Multimedia Systems and Telecommunications
Services, Darmstadt, Germany, 1997.

[20] Randolph Nelson, Probability, Stochastic Processes, and
Queueing Theory : The Mathematics of Computer Performance
Modeling, Springer, 1995.


