
 1

Stochastic Performance Guarantees for Mixed Workloads in a
Multimedia Information System *

Guido Nerjes�, Peter Muth�, Gerhard Weikum�

�University of the Saarland
Department of Computer Science
D-66041 Saarbrücken, Germany

�Swiss Federal Institute of Technology (ETH)
Institute of Information Systems

CH-8092 Zurich, Switzerland

E-mail: {nerjes, muth, weikum}@cs.uni-sb.de, WWW: http://www-dbs.cs.uni-sb.de/

Abstract
We present an approach to stochastic performance guar-

antees for multimedia servers with mixed workloads. Ad-
vanced multimedia applications such as digital libraries or
teleteaching exhibit a mixed workload with accesses to both
’continuous’ and conventional, ’discrete’ data, where the
fractions of continuous-data and discrete-data requests vary
over time. We assume that a server shares all disks among
continuous and discrete data, and we develop a stochastic
performance model for the resulting mixed workload, using
a combination of analytic and simulation-based modeling.
Based on this model we devise a round-based scheduling
scheme with stochastic performance guarantees: for conti-
nous-data requests, we bound the probability that ’glitches’
occur, and for discrete-data requests, we bound the probabil-
ity that the response time exceeds a certain tolerance thresh-
old. We present early results of simulation studies.

1 Introduction

Multimedia applications such as news-on-demand for the
home market or digital library access over the Internet pose
challenging performance demands on the underlying storage
servers [14, 7]. Previous research in this area has very much
focused on the performance issues for continuous data only
(i.e., video and audio), assuming that all client requests refer
to movies or video clips. However, advanced applications
such as digital libraries or teleteaching will rather exhibit a
mixed workload with massive access to conventional, dis-
crete data such as HTML text documents and images as well
as index-supported searching in addition to the requests for
continuous data. Furthermore, with unrestricted 24-hour
world-wide access over the Web, such multimedia servers
have to cope with a dynamically evolving workload where
the fractions of continuous-data vs. discrete-data requests
vary over time and cannot be reliably predicted in advance.
Thus, for a good price/performance ratio it is mandatory that
such a server operates with a shared resource pool rather than
statically partitioning all resources (disks, memory, etc.) into
two pools for continuous and discrete data.

This paper addresses some of the critical performance is-
sues that arise in the disk scheduling for mixed workload
servers with a shared disk pool. A well known requirement is
that continuous data calls for performance guarantees in
terms of data delivery time to ensure ’hiccup-free’ display at
the client site. In addition, quality-conscious applications re-
quire that the response time of discrete-data requests stay be-
low some user-tolerance threshold as well. This requirement
has been ignored in prior work on mixed multimedia work-
loads [25] where the performance of discrete-data requests
seems to be an afterthought. In fact, given that video viewing
is commonly perceived as a higher-class service compared to
the bread-and-butter access to ’standard’ discrete data, it is
likely that users will accept an admission control policy for
resource-intensive continuous-data requests and may be
turned away when the system saturates, whereas slow ser-
vice for the vanilla requests to discrete data would be consid-
ered as unacceptable. Admission control for discrete-data re-
quests, on the other hand, is out of the question from the
user’s viewpoint (although some WWW servers resort to this
solution upon high load, but this is exactly perceived as non-
responsive service).

Research on multimedia storage systems has put empha-
sis on deterministic worst-case guarantees for continuous
data. Worst-case guarantees may indeed be reasonable in
specific video-only applications such as movie-on-demand
or in extremely critical real-time applications such as tele-
surgery. However, in the more general setting considered
here, deterministic worst-case guarantees are infeasible and
we argue that stochastic guarantees are more appropriate for
the following reasons:

• The load imposed by the discrete-data requests can be
characterized only in a stochastic manner (typically as a
Poisson arrival process with a certain probability dis-
tribution for the service demands). In more technical
terms [18], this fraction of the load is better captured by an
open system model whereas the continuous-data requests
can indeed be adequately modeled as a closed system with

* This work has been supported by the ESPRIT LTR project HERMES.

In Proceedings of the IEEE International Workshop on Research Issues in Data Engineering (RIDE’97), Birmingham, UK, April 1997

 2

a fixed multiprogramming level and periodic service de-
mands.

• The resource demands of both discrete- and continuous-
data requests cannot be realistically modeled in a deter-
ministic manner. Important performance factors like disk
controller caches or masking of transient failures (e.g., in
a RAID) can be captured only stochastically at best. In or-
der to employ a deterministic model, one would have to
assume very conservative service-time bounds (e.g., with
no disk caching at all) so that scheduling policies may end
up with substantially underutilized resources. Alterna-
tively, a deterministic model could be based on mean va-
lues only (e.g., average disk seek time), but then it is im-
possible to give hard performance guarantees.

In this paper, we will therefore pursue stochastic guaran-
tees for both continuous- and discrete-data requests. For dis-
crete-data requests we aim to guarantee good response time
with high probability by bounding the tail of their response
time distribution (e.g., the 95th percentile). For continuous-
data requests, on the other hand, we aim to bound the prob-
ability that data portions are behind their delivery deadline
according to the real-time display requirements. Our ap-
proach is based on coarse-grained striping of the data across
the server’s disks and a disk scheduling scheme that operates
in rounds similar to the schemes in [2, 6, 11, 23]. Each round
(of say a few seconds duration) is divided into two periods, a
C-period and a D-period, during which the continuous-data
and the discrete-data requests are served. The length ratio of
the two periods is a degree of freedom that is dynamically
adapted to the current workload based on a prediction of the
near-future response time of the discrete-data requests. Whe-
never the specified response time guarantees (in the order of
a few seconds) can no longer be satisfied, it is attempted to
shorten the length of the C-period and extend the D-period
correspondingly. This in turns triggers an admission control
and scheduling problem for the continuous-data requests
within the C-period of a round.

Our approach uses an analytic model for stochastically
estimating the ’glitch’ rate, i.e., probability that a data por-
tion does not meet its display deadline, for a given multipro-
gramming level of continuous-data streams between clients
and the server. When a request arrives to open a new continu-
ous-data stream, it is admitted only if the predicted glitch rate
for the new multiprogramming level does not exceed a speci-
fied tolerance threshold. To estimate the response time dis-
tribution of the discrete-data requests, we investigate the use
of analytic queueing models, specifically M/G/1 vacation
server models. However, as it turns out that we can (so far)
not derive a model that is both accurate and computationally
inexpensive, we finally resort to using a carefully
constructed simulation model that is evaluated off-line and
can efficiently drive the system’s run-time decisions.

We are not aware of any previous work that pursues an ap-
proach to mixed workloads along these lines. A prototype
system based on this new approach is being built by extend-
ing the FIVE experimental file system [29, 30, 32].

The rest of the paper is organized as follows. Section 2 in-
troduces our system architecture. Section 3 develops an ap-
proach towards a performance prediction model, for both
continuous-data and discrete-data requests. Finally, Section
4 discusses the admission control and the adaptation of the
disk scheduling to the workload dynamics, based on pre-
computed results of the performance model.

2 System Architecture
In this section, we discuss assumptions on the workload

and the architecture of our system. In general, we assume that
clients submit requests for both continuous data and discrete
data, in short: C-data and D-data, to the server. Objects con-
sisting of C-data, e.g., videos, audios or animation data, are
composed of sequences of fragments and constitute data
streams that are consumed by the client in a time-constrained
way according to the display bandwidth of the object. In con-
trast, D-data such as text, images, or metadata, has no explicit
time constraints. For C-data requests, in short C-requests1,
we assume that each client provides a certain amount of
memory as a buffer for incoming fragments. The buffer size
may vary among clients according to the local resources
available. The buffer size must not be below a certain mini-
mum allowing the server to deliver a fragment before the
previous one is consumed by the client. We assume a fast and
reliable network with a performance capacity well above our
bandwidth requirements, and thus disregard network issues
in this paper.

2.1 Data Layout
We consider a single server with D disks. Since video and

audio compression techniques reduce the bandwidth of vid-
eos and audios substantially, we assume that the display
bandwidth rdisplay of a continuous object is always smaller
than the bandwidth rdisk of a single disk.

C-data is split into fragments. Fragments are assigned to
disks in a round robin fashion, similarly to the coarse-
grained striping approach of [23] and the simple/staggered
striping approach of [2] specialized to the case with cluster
size 1 and stride 1. The salient properties that we share with
these approaches are twofold:

• The load is balanced across the disks, assuming that con-
tinuous objects are sufficiently large to be spread across
all disks and that most users consume complete objects
(as opposed to fast-forwarding a video or viewing only a
short prefix).

• The server can sustain more concurrent (but time-wise
unrelated) streams on the same continuous object than it

1. Likewise, requests to D-data will henceforth be called D-requests.

 3

would be possible by multiplexing the service of a single
disk in case the entire object resided on this disk. With D
disks, disk bandwidth rdisk, and object display bandwidth
rdisplay, the server can, in principle, support up to
D * rdisk / rdisplay streams on the same or different objects
(under the optimistic assumption that multiplexing does
not lead to a reduction of the effective disk bandwidth).

We do not assume the display bandwidth of a continuous
object to be constant, as compression techniques such as
MPEG-2 result in a variable bandwidth over time. In our
scheme, all data fragments stored by the server have the same
display time [9, 3], i.e., the time it takes a client to consume a
fragment (e.g., a few seconds). As a consequence, fragments
vary in size. By ’normalizing’ all fragments to the same time
length, we induce a periodic access pattern with a uniform
period across all continuous objects regardless of the display
bandwidth differences between objects and the variation
within an object. This type of fragmentation requires parsing
a continuous object before it is laid out on the server’s disks,
but this is straightforward and inexpensive given that contin-
uous objects are never modified after their initial insertion.

Discrete objects are allocated to disk such that the ex-
pected I/O load on behalf of this data is balanced across the
disks; this involves coarse-grained striping for large objects
and simple but effective load balancing heuristics along the
lines of [30]. In what follows we do, however, not rely on any
specific assumptions on the storage layout for discrete ob-
jects.

C-data and D-data both reside on the same shared disk
pool, as this provides a much better resource utilization than
a partitioned scheme with dedicated disks, from both a disk
space and a disk bandwidth point of view:

• For a partitioned server, new disks have to be added when
the space for one of the two data categories becomes ex-
hausted. A server with shared disks requires additional
disks only if it runs out of space for both kinds of data to-
gether. The difference becomes important when the ratio
of space used by C-data and D-data varies over time. This
is the case, for example, for many Web servers with
evolving sets of HTML documents.

• The advantage of a shared disk pool is even more impor-
tant from a disk bandwidth viewpoint. For many multi-
media applications it is likely that the ratio of C-requests
and D-requests varies over time. For example, teleteach-
ing lectures in the morning may be mostly based on vid-
eos, whereas working on assignments in the afternoon re-
quires more lookups of reference data such as text. A
partitioned server needs enough disk performance capac-
ity on each data type in order to sustain all workloads. On
a shared server, the aggregate bandwidth of all disks can
be used anytime to serve both C- and D-requests. Thus,
sharing disks may yield a substantial cost saving.

D-requests

Initialization Requests

Admission
Control

C-requests

Client Requests

Workload Statistics

Stochastic Model
for Continuous-

Workload

Stochastic Model
for Discrete
Workload

Workload
Parameters

Nmax

Workload
Parameters

lD

lC

. .

Figure 1: Architecture of the Mixed Workload Server

.

. ..

. .Disk Scheduler

2.2 Admission Control and Disk Scheduling
The scheduling is composed of an admission control and a

separate disk scheduler for each disk, as illustrated in Fig-
ure 1. D-requests are immediately submitted to the responsi-
ble disk schedulers for those disks on which the requested
object resides. For simpler explanation, we will assume that
all D-requests are served by exactly one disk as it would in-
deed be the case with non-striped objects. Initialization re-
quests for opening a new continuous data stream have to pass
the admission control first. As C-requests are deadline-
oriented, only a limited number of concurrent streams can be
sustained. Therefore, the admission control rejects new init-
ialization requests when the server load becomes too high (as
computed by the stochastic model of Section 3.1.). D-re-
quests are not subject to admission control because we as-
sume that this is not acceptable to the applications that con-
sider such requests as a bread-and-butter workload. If D-re-
quests were rejected by some form of admission control, they
would have to be queued until they are eventually accepted.
From the application point of view, the queueing time just
adds to the response time perceived by the user.

Now consider the actual disk scheduling. The periodic
pattern of the C-requests for the admitted streams suggests a
cyclic scheduling scheme that proceeds in rounds, with a
round length, lround, equal to the display time of a fragment,
which is uniform across all fragments. The round length is a
configuration parameter of our architecture; changing it
would require all C-data to be re-fragmented. During a
round, all C-requests of the admitted streams have to be ser-
ved. Given that a fragment always resides on a single disk,
there are no dependencies among the requests of one round,
so that we can schedule the requests of each disk separately,
as long as we complete all requests by the end of the round. In
order to minimize disk seeks, we use the SCAN algorithm for
the disk arm movement [28, 4] (also known as the ’elevator’

 4

algorithm). With this algorithm, all requests of one round are
sorted according to their seek position on the disk and are
served with one sweep of the disk arm.

So far we have disregarded the scheduling of D-requests.
Since the round length would be at most a few seconds,
which is a tolerable delay for most applications, an intriguing
idea would be to schedule the D-requests after all C-requests
of a round are served. However, since this unused time at the
end of a round can become arbitrarily small depending on the
C-request load, the response time of D-requests may degrade
significantly. Discrete requests may end up being queued for
several rounds, unless the scheduler takes additional actions.
To avoid this situation, we further refine the approach and di-
vide a disk scheduling round into two periods of pre-speci-
fied length: In the first period, denoted C-period, C-requests
are served by the SCAN algorithm. The second period, de-
noted D-period, is used to serve D-requests, with an FCFS
policy for fairness reasons. The ratio lC/lD of the lengths of
both periods is a scheduling parameter and has to be adjusted
to reflect changes in the overall workload. A longer C-period
is needed if a higher number of continuous data streams must
be sustained, and a longer D-period is needed when the arriv-
al rate of D-requests increases. As the overall round length
lround = lC + lD is constant, it is impossible to support both re-
quest categories in an optimal way. Our approach to finding
an adequate compromise is based on two stochastic model
components, as shown in Figure 1:

(1)For the discrete requests, based on the assumption of a
Poisson arrival process with a given arrival rate �D and a
certain, observable distribution of the service time, the
length lD is derived such that the response time for the ma-
jority of discrete requests, say the 95th percentile, is be-
low a certain threshold (which would typically be in the
order of a few seconds).

(2)Then, given the length lC = lround - lD of the C-period, we
derive the maximum number, Nmax, of concurrent C-data
streams that can be served during a C-period such that the
probability, plate, of missing a display deadline stays be-
low a specified threshold, say 99 percent. The computed
value of Nmax is then used to drive the admission control
in that only up to Nmax streams can be admitted.

Using both models gives us stochastic guarantees for C-
requests not missing their deadlines and for discrete request
not exceeding a given response time threshold. The stochas-
tic models themselves are discussed in the next section.

3 Performance Guarantees

This section develops stochastic models that allow us to
give stochastic guarantees for the glitch rate of C-requests
and the response time of D-requests. These guarantees are
derived as Chernoff bounds [19, 22] for the tail of the under-
lying probability distributions. Throughout the section we

consider only one disk and its corresponding load, which is
feasible as there are no scheduling dependencies among dif-
ferent disks (see Section 2). Thus, all workload parameters
like the multiprogramming level of continuous streams and
the arrival rate of D-requests are on a per disk basis, assum-
ing that the load is uniformly distributed across disks.

3.1 Performance Guarantees for C-Requests
The goal of this section is to derive, for a C-period of

length lC, an upper bound, Nmax, for the number N of concur-
rent streams such that the probability of not being able to
serve all N requests within time lC is below a certain thresh-
old plate , say 1 percent. From this probability, plate, we derive
the probability mass function fglitch for the number of
’glitches’, i.e., late data deliveries, within an entire stream of
duration nR rounds as follows:

fglitch(k) = P[# of glitches=k] =�nR
k � plate

k (1 � plate)
nR � k

Note that this is actually a pessimistic upper bound for the
glitch rate of an individual stream, as a late round would af-
fect only a subset of the active streams. We will later use
these probabilistic considerations in the admission control
for newly arriving initialization requests (see Section 4),
with a specified bound on plate or, equivalently, the tail of
fglitch.

The key problem to be solved here is to estimate the total
service time for the N requests of one round’s C-period, using
a SCAN policy for the disk arm movement. Prior work on
this problem used constant worst case values for the seek and
rotational delays between successive data transfers [12], or
assumed that the total (i.e., accumulated) seek time of one
sweep over the disk equals the maximum seek time of the
disk [23]. This yields a deterministic but unrealistic estimate
since it ignores the stochastic nature of rotational delays and
the non-linearity of the disk arm movement [26]. The only
work that addresses this problem by a stochastic model are
[5, 8]. [5] assumes independent seeks for the N requests rath-
er than the much better SCAN policy, and arrives at a rela-
tively coarse bound based on the Tschebyscheff inequality.
[8] is also based on independent seeks and assumes that N is
sufficiently large to apply the central limit theorem (i.e., con-
sider only the limit N��) and thus assume that the total ser-
vice time is normally distributed, which is not always justi-
fied for realistic values of N (e.g., 10 to 50 streams per disk).
In the following we derive a much more accurate stochastic
model and a much tighter bound using a recent result on the
total seek time of the SCAN policy [24] and the method of
Chernoff bounds [19, 22].

Let TC denote the total service time for a C-period with N
requests. Then we have

TC � Tseek ��
N

i�1

Trot,i ��
N

i�1

Ttrans,i

 5

where Tseek is the accumulated seek time for one sweep of
the SCAN policy, Trot,i is the rotational delay and Ttrans,i is
the transfer time of the ith request.

According to [24] Tseek is maximized, under a realistic
function for the seek time, for equidistant seek positions of
the N requests. The seek time function itself is assumed to be
proportional to the square root of the seek distance for small
distances below a disk-specific constant, and a linear func-
tion of the seek distance for longer distances, which is in ac-
cordance with the studies of [26]. Thus, for given disk pa-
rameters, the maximum total seek time of a sweep can be eas-
ily computed by assuming the N seek positions to be at cylin-
ders i*CYL/(N+1) for i=1, ..., N where CYL is the total num-
ber of the disk’s cylinders, and applying the seek time func-
tion. This computation yields an upper bound for Tseek
which, other than depending on N, can now be viewed as a
constant, denoted SEEK in the following.

The N random variables Trot, i are independently and iden-
tically distributed with a uniform distribution between 0 and
the time for one disk revolution, ROT. Similarly, the random
variables Ttrans,i are independently identically distributed.
This distribution depends on the distribution of data frag-
ments and the disk’s transfer rate (which in turn is a function
of the revolution speed and the head switch time). For the
sake of a simpler explanation, we assume in the following
that Ttrans,i is exponentially distributed with a mean value
TRANS. (The same derivation could be carried out also with
other common distributions, e.g., a more realistic hyperex-
ponential distribution, but this would complicate the formu-
las.)

So Tseek is equal to the constant SEEK, and the probability
density functions of Trot,i and Ttrans,i are given by

frot(x) � 1
ROT

 and ftrans(x) � 1
TRANS

e� x
TRANS ,

and their Laplace-Stieltjes transforms [1, 22] are given by

Lseek(s) � e�s SEEK , Lrot(s) � 1 � e�s ROT

s ROT
 , and

 Ltrans(s) � 1
1 � s TRANS

 .

The Laplace transform of TC, which involves the N-fold
convolution of the convolution of Trot,i and Ttrans,i, is given
by

LC(s) � e�s SEEK �1 � e�s ROT

s ROT
�

N

� 1
1 � s TRANS

�
N

 ,
and the corresponding moment generating function

MC(s) equals LC(-s). Now we are ready to apply Chernoff’s
theorem to bound the tail of the random variable TC . Namely,
the following inequation holds [19, 22]:

P[TC 	 t]
 inf�	0 {e�� t MC(�)} � inf�	0 {g(�)}

with

N

Figure 2: Analytically Predicted vs. Simulated
’Lateness’ Distribution

ROT = 15 ms
TRANS = 10 ms
lC = 0.5 s
CYL = 1962

simulation
result

analytic
result

�3.24 � 0.4 d�

8 � 0.008 d
; d 383
; d 	 383seek(d) =

g(�) � e�� t e� SEEK �e� ROT � 1
� ROT

�
N

� 1
1 � � TRANS

�
N

.

For the given form of g, differentiating g and solving
g’ = 0 for θ yields the optimum value of θ to obtain the sharp-
est bound in the Chernoff inequation. While we did not man-
age to obtain a closed form expression for this result, solving
g’ = 0 numerically is straightforward and very efficient.

So finally plate is obtained by

plate � P[TC 	 lC]
 g(solution of g’ = 0 using t � lC)

For example, for lC = 0.542, ROT = 0.015, TRANS = 0.01,
SEEK = 0.12282, N = 15, the derived upper bound for plate is
approximately 0.01 . In other words, we can guarantee with
probability at least 1 - plate = 0.99 that all N C-requests of one
round can be served within the C-period of length lC. So for a
given value of lC and a threshold � for plate, we can derive the
maximum number of concurrent streams as

Nmax � max {N | plate
 �}. For example, if lC = 0.2 and
plate should be at most 1 percent, then Nmax would be 3, and
for lC = 0.4, Nmax would be 9.

We compared the predictions of this model with results
obtained from detailed simulations. Figure 2 shows the ana-
lytically predicted and the simulated values for plate as a
function of Nmax. The analytic model is conservative in that it
always overestimates the lateness probability. For example,
for a plate threshold of 0.01, the analytic model allows a max-
imum of 13 streams whereas the simulation shows that a val-
ue of 15 for Nmax is possible.

Now that we have the probability plate for not being able
to complete all N requests within time lC, we can apply the
method of Chernoff bounds also to the probability mass
function fglitch of the number of glitches within an entire
stream of nR rounds. As derived above, the number of

 6

glitches is binomially distributed. For this important case,
the following Chernoff bound, derived in [HR89], can be ap-
plied to our scenario under the constraint that k / nR > plate :

perror � P[# of glitches 	 k]

 �nR plate

k
�

k �nR � nR plate

nR � k
�

nR�k

For example, using plate = 0.01 and nR = 1200, the proba-
bility perror for more than 24 glitches is at most 1 percent.
Conversely, for a specified upper bound for the number of
glitches per stream (the k value above) and the corresponding
probability that this bound is not exceeded, we can again de-
rive the maximum number of streams, Nmax, that the system
can sustain within a C-period of length lC under these condi-
tions.

For example, for lC = 0.5, nR = 1200, k = 12 and the other
parameters as given in figure 2, simulations show that at
most 17 streams can be accepted. The analytic evaluation re-
stricts Nmax to a maximum value of 12.

3.2 Performance Guarantees for D-Requests

3.2.1 Applicability of M/G/1 Vacation Server Models

In this section we explore the use of M/G/1 vacation serv-
er models for predicting the response distribution of the D-
requests. In applications with a large number of clients, the
arrival of requests can be stochastically described as a Pois-
son process. As a consequence, the time between the arrival
of two successive D-requests is exponentially distributed
with mean 1 / λD, where λD is the average arrival rate of the
Poisson process. Because of this stochastic behavior it is not
feasible to provide ’hard’, deterministic performance guar-
antees to every single request (e.g. every request is served
within 0.1 seconds). Rather it is common (see, e.g., database
and transaction system benchmarks [13]) to require that a
specified percentage of requests will finish within a given
time, e.g., 95 percent of the D-requests will have a response
time below 1 second.

As described in Section 2 the service of requests is per-
formed in a cyclic manner. During each round of constant
length lround a D-period of length lD is dedicated to the ser-
vice of D-requests. D-requests that arrive outside the D-peri-
od are queued and served in FCFS order in the subsequent D-
periods. This situation is illustrated in Figure 3. The perfor-
mance measure that we aim to predict in this section is the
response time of D-requests, which depends on the arrival
rate λD, the length of the D-period lD = lround - lC, and the
service time distribution of the D-requests.

An analytic approach to the estimation of the response
time of D-requests is to build on vacation-server queueing
models [31, 10]. In an M/G/1 queueing model with vacations
the arriving requests form a Poisson process with exponen-

response time request 1

D-per. D-per. D-per.

time
1 2 3 4 5 6 7 8 9 10

2 3 4 5 67 8 9 101

lD

lround

C-period C-period C-period

lC

Figure 3: Arrivals and Departures of D-Requests

tially distributed interarrival time, the service time can be ar-
bitrarily distributed, and the requests are served by a single
server in FCFS order. The speciality of vacation-server mod-
els is that the server occasionally suspends its service for a
certain ’vacation period’; in our setting the ’vacation’ corre-
sponds to the C-period during which the server pauses serv-
ing D-requests. In the following we discuss the suitability of
specific vacation-server models for which analytic results
can be found in the literature.

In vacation models with exhaustive service, the server
takes a vacation (i.e., stops serving requests) for a certain
time whenever its queue of waiting requests becomes empty.
When the server returns from a vacation it takes another
vacation (following a so-called ’multiple vacation model’) if
no request has arrived during the vacation and the queue is
still empty [31]. A possible sequence of service and vacation
periods is shown in Figure 4 (where service and vacation
times are assumed to be constant).

Our cyclic service strategy of serving C-requests and D-
requests can be coarsely mapped to the sketched M/G/1
vacation-server model with exhaustive service and multiple
vacations: D-periods correspond to the service periods, C-
periods to vacations of the server. Note that this is an approxi-
mation since our actual service policy does not take another
vacation when the D-request queue is empty at the beginning
of the D-period. Despite this discrepancy it seems intriguing

S = constant service time (single request)
V = constant vacation time

V SS VS V S S SVS S S

time

3 4 5 6 7 8 921

3 4 5 6 7 8 921

Figure 4: Service and Vacation Periods in the
 Vacation Server Model

 7

to apply such a model for an approximate performance pre-
diction as follows.

The response time of a D-request, Tresp, is composed of
the time Twait the request spends in the server queue until ser-
vice starts and the time Tsvc that is needed for service.

Tresp � Twait � Tsvc

For a simple presentation, it is assumed that the service
time Tsvc is exponentially distributed with mean
E[Tsvc] = SVC (other distributions such as normal or hyper-
exponential could be handled as well). The vacation time
Tvac is constant with value E[Tvac] = VAC = lround - lD. The
Laplace-Stieltjes transforms of the service time, vacation
time, and waiting time [31] distributions are given by

 Lsvc (s) � 1
1 � s SVC

 , Lvac (s) � e�sVAC, and

 Lwait(s) �
1 � Lvac (s)

s E[Tvac]

s (1 � � E[Tsvc])
s � � � � Lsvc (s)

.

The Laplace-Stieltjes transform of Tresp is then obtained
as the product of the waiting and service time transforms:

Lresp(s) � Lwait(s) * Lsvc(s) �

1 � e�sVAC

s VAC
s (1 � � SVC)

s � � � � (1 � s SVC)�1
 1
1 � s SVC

Now, analogously to Section 3.1., it is possible to apply
Chernoff’s theorem to bound the tail of the random variable
Tresp . Let Mresp(s) = Lresp(-s) be the moment generating
function of Tresp. Then the following inequation holds:

P[Tresp 	 t]
 inf�	0
�e�� t Mresp(�)� � inf�	0 {h(�)}

with

h(�) � e�� t e�VAC � 1
� VAC

� (1 � � SVC)
�� �� � (1 � � SVC)�1

*

1
1 � � SVC

Given a fixed response time threshold ρ, the probability
that a request has a response time of at least ρ can be calcu-
lated using

pdelay � P[Tresp 	 ρ]
 h(solution of h’ = 0 with t � ρ)

For example, for SVC = 0.01s, VAC = 0.3s, λ = 30s–1 and
ρ = 0.338 seconds, pdelay is bounded by 0.05. This means
that with probability 1-pdelay = 0.95 a request will finish
within a time interval of 0.338 seconds. If, on the other hand,
both the response threshold ρ and a bound δ for pdelay are giv-
en, then the maximum feasible vacation time Tvac or, equiva-
lently, the minimum length of the D-period,
lD = lround - VAC, can be determined for a certain arrival rate
λ.

As noted before, the multiple vacation model with ex-
haustive service does not capture the periodic nature of our
scheduling policy. Under light load, i.e., when the arrival rate
is low and the waiting queue is often empty, the vacation
model predicts more vacations than our policy which would
actually take a vacation only once in a round. Under heavy
load, i.e., when the waiting queue is rarely empty, the vaca-
tion model predicts only few vacations, which is in contrast
to our actual policy where the server is definitely on vacation
once in a round and the vacation length is not affected by the
load. These discrepancies lead to deviations between the pre-
dicted performance as derived analytically and the results of
a detailed simulation. Unfortunately, the large error we
found renders the analytic model unacceptable for practical
use.

Better approximations could be obtained by applying the
more sophisticated models described in [20, 21]. These mod-
els assume that the length of a service period, in our case lD , is
limited. Whenever the server expires this limited service
time, a vacation period is started regardless of whether the re-
quest queue is empty or not. In [20] the request in service is
preempted when the service time expires and resumed di-
rectly after the vacation; in [21] the request in service is first
completed before the vacation period starts. Unfortunately,
however, these models incur substantial mathematical diffi-
culties; there are no closed-formula results, and even approx-
imative derivations involve a high computational complex-
ity. Studies on improving the computational complexity of
the solution methods of [20, 21] while retaining an accept-
able accuracy are left for future work.

3.2.2 Simulation-Based Guarantees

Although the analytic model of Section 3.2.1 does pro-
vide better insight into the performance of D-requests, its in-
accuracy, on the one hand, and the computational complexity
of more accurate models, on the other hand, prevent us from
adopting an analytic model for run-time scheduling deci-
sions. So we rather resort to estimations based on off-line
simulations. Assuming that the service time distribution, the
round length lround, and the user-tolerated response time per-
centile are fixed at the system configuration time, we can
pre-compute by simulation the minimum value of lD that is
necessary to meet the requirements, over a spectrum of � val-
ues. These values would then be stored in a table that can be
efficiently looked up at run-time.

Although this approach may appear less elegant than an
analytic model, it serves its purpose well in that it allows us to
predict the response time distribution of the D-requests as a
function of the two parameters lD and �. The reduction of the
parameter space to these run-time-relevant parameters is
what makes this approach feasible. Note that we can control
the accuracy and statistical confidence of the predictions,

 8

without incurring any additional run-time costs, as the simu-
lations are carried out off-line.

4 The Scheduling Algorithm

Our disk scheduling algorithm is driven by the control pa-
rameters Nmax, lC, and lD, where lC + lD = lround and lround is
fixed. In the previous section we have presented a stochastic
model and a simulation approach to derive the values of lC, lD
and Nmax from given workload parameters:

(1)The arrival rate of D-requests, �D, and the specified
threshold for the tail of the response time distribution de-
termine the value of lD and, with fixed lround, also the val-
ue of lC.

(2)The value of lC and the specified threshold for the prob-
ability of missing a delivery deadline (or, equivalently,
the glitch rate of a C-data stream) determine the maxi-
mum sustainable multiprogramming level of concurrent
C-data streams, Nmax.

These control parameters are adjusted whenever a change
in the workload takes place. In principle, this can happen at
the beginning of each round. But we expect that shifts in the
workload are not that frequent, and the parameters remain
stable over several rounds. The computation of the parame-
ters is based on the analytic model of Section 3.1 and off-line
simulations for the problem of Section 3.2. In both cases the
results are precomputed and stored in tables that merely need
to be looked up at run-time. These tables are very compact, as
we can assume that service time distributions are stationary
(as they are determined by disk and data properties) and thus
do not have to be considered as variable parameters. Thus,
the table for the lD values has one entry for each value of �D
within a range of expected values, say from 1 arrival per sec-
ond through 10000, and could even be organized as a sparse
table using interpolation for missing values. The table for
Nmax needs one entry for every possible setting of lC and
would be in the order of a thousand entries. Altogether, the
run-time overhead of the approach is in the order of 10 KBy-
tes of memory.

Figure 5 presents the complete admission control and disk
scheduling algorithm in a pseudo-code notation. In addition
to the tables discussed above, the main data structures are
three queues, denoted C-queue, D-queue, and I-queue, for
the C-requests, D-requests, and initialization requests, re-
spectively. The algorithm is invoked at the beginning of each
round, i.e., every lround time units. The first step analyzes the
current load conditions by inspecting the workload statistics
and looking up the tables for the control parameters of the
round. In the second step, it is attempted to admit new
streams that may be waiting in the I-queue. However, for
each disk, a limit of Nmax streams must not be exceeded. Note
that invoking the admission control at the start of each sche-
duling round implies an average startup latency for newly ar-

step 1 (analysis):
determine currently expected lD from
workload statistics;
look up the appropriate values of lD , lC , and Nmax in
the corresponding tables;

step 2 (admission control):
let N be the current number of continuous requests
that need to be served per round and per disk on
behalf of the active streams;
while (N <= Nmax) {

admit first stream from the I-queue;
insert the first request of each newly admitted
stream into the C-queue;
N++

};

step 3 (overload management):
if (N > Nmax)
case (policy)

kill: kill N-Nmax streams;
adapt QoS: reduce quality of service of all
streams by N/Nmax;
wait: delay adjustment of lC until N-Nmax streams
have terminated;

step 4 (disk service):
while (current_time < start_of_current_round + lC) {

process requests of the C-queue according to the
SCAN policy;

}
while (current_time < start_of_current_round + lround) {

process next request from the D-queue
in FCFS order;

};

Figure 5: Pseudo Code for the Admission Control
and Disk Scheduling Algorithm

riving initialization requests of half a round length. Given a
typical round length of a few seconds, the startup delay ap-
pears to be tolerable.

The third step, overload management, is necessary be-
cause of the evolving load incurred by the D-requests. It may
turn out that the C-round duration lC has to be shortened in
order to accommodate an increased discrete load. In such a
situation, the system could have admitted already more
streams than it can now sustain. The problem is how to drive
the system back to a state where it is able to sustain the cur-
rent load. There are at least three pragmatic options, iterated
until, for each disk, the number of C-requests to be served in
each round is again below Nmax:

(1)Kill active streams

(2)Reduce the quality of service for active streams [16, 8],
e.g., by dropping some video frames

(3)Keep the old length of the C-period until enough streams
are finished

In cases (1) and (2), C-requests suffer from the increased
load incurred by D-requests. In case (3), D-requests suffer
until the load of C-requests is eventually reduced. Combina-
tions of the above approaches are possible, but they remain
pragmatic, as during the overload phase the performance
guarantees are not met. In practice, this might be less of a

 9

problem as in most cases the arrival rate �D of D-requests will
change slowly, causing only slight changes in the scheduling
parameters. However, we will address this problem in more
detail in our future work.

The fourth and final scheduling step is the actual process-
ing of the requests in the C- and D-queues. The processing of
the C-queue should be finished lC time units after the start of
the round. C-requests that cannot be served until then cause a
glitch in the corresponding data stream. If the last C-request
to be served in the round finishes before the end of the C-pe-
riod, the remaining time is dedicated to the D-queue, which
makes the D-period longer.

5 Conclusions

In this paper, we have presented an approach towards sto-
chastic performance guarantees for multimedia servers with
workloads consisting of both continuous-data and discrete-
data requests. This work is part of the Esprit long-term re-
search project HERMES [15]. The architecture of our server
in terms of data placement and load balancing is based on ex-
periences with the FIVE prototype [29, 30, 32], an experi-
mental file system for parallel disk systems. We are currently
extending FIVE to support the presented admission control
and scheduling method for both continuous and discrete
data, using the stochastic model components developed in
this paper. We plan to integrate the extended FIVE system
with an already implemented prototype multimedia server
for a ’News on Demand’ application [27] (which is currently
based on staggered striping).

Future work includes extensions of the architecture in or-
der to make it more flexible. In particular, we have disre-
garded buffering issues so far, and we want to exploit cach-
ing opportunities especially at the client sites. In the ad-
vanced multimedia applications that we are aiming at, many
clients are quite powerful PCs or workstations that have
memory and also local disk resources that substantially ex-
ceed the minimum buffering capabilities of a client as op-
posed to a set-top unit in a home market setting. This allows
the server to deviate from the usual just-in-time-delivery
paradigm for the continuous data, and rather preload frag-
ments into the client ahead of time depending on the client’s
available cache space, thereby saving resources for heavy-
load periods later. On the other hand, with a more complex
architecture, the complexity of the stochastic models in-
creases, too. Therefore, the approach of pre-computing per-
formance prediction results by off-line simulations (as pur-
sued in Section 3.2) and using these results in an efficient
table-lookup manner for run-time scheduling decisions may
become more intriguing.

References
[1] Arnold O. Allen, Probability, Statistics and Queueing

Theory with Computer Science Applications, 2nd edition,
Academic Press, 1990.

[2] Steven Berson, Shahram Ghandeharizadeh, Richard
Muntz, Staggered Striping in Multimedia Information Sys-
tems. Proceedings ACM SIGMOD International Confer-
ence on Management of Data, Minneapolis, Minnesota,
pp.79–90, May 1994.

[3] Ariel Cohen, Walter A.Burkhard, P. Venkat Rangan, Pipe-
lined Disk Arrays for Digital Movie Retrieval, Proceedings
of the International Conference on Multimedia Computing
and Systems (ICMCS ’95), Washington D.C., May 1995.

[4] Edward G. Coffman, Jr., Micha Hofri, Queueing Models of
Secondary Storage Devices, In Hideaki Takagi, editor, Sto-
chastic Analysis of Computer and Communication Sys-
tems, North Holland, 1990.

[5] Huang–Jen Chen, Thomas D. C. Little, Storage Allocation
Policies for Time–Dependent Multimedia Data, to appear
in IEEE Transactions on Knowledge and Data Engineer-
ing.

[6] Mon–Song Chen, Dilip D. Kandlur, Philip S. Yu, Opti-
mization of the Grouped Sweeping Scheduling (GSS) with
Heterogenous Multimedia Streams, Proceedings of the
ACM International Conference on Multimedia (ACM
Multimedia ’93), Anaheim, California, 1993.

[7] Stavros Christodoulakis, Peter Triantafillou, Research and
Development Issues for Large–Scale Multimedia Informa-
tion Systems. ACM Computing Surveys 27(4): pp.
576-579, 1995.

[8] Ed Chang, Avideh Zakhor, Variable Bit Rate MPEG Video
Storage on Parallel Disk Arrays, Proceedings of SPIE
Conference on Visual Communication and Image Process-
ing, Chicago, Illinois, pp. 47-60, September 1994.

[9] Ed Chang, Avideh Zakhor, Cost Analyses for VBR Video
Servers, Proceedings of IS&T/SPIE International Sympo-
sium on Electronic Imaging: Science and Technology, San
Jose, California, January 1996.

[10] Bharat Doshi, Single Server Queues with Vacations, In Hi-
deaki Takagi, editor, Stochastic Analysis of Computer and
Communication Systems, North Holland, 1990.

[11] D. James Gemmel, Jiawei Han, Richard Beaton, Stavros
Christodoulakis, Delay–Sensitive Multimedia on Disks,
IEEE Multimedia, pp. 57-67, 1995.

[12] Shahram Ghandeharizadeh, Seon Ho Kim, Striping in
Multi–disk Video Servers, Proceedings of the SPIE High–
Density Data Recording and Retrieval Technologies Con-
ference, October 1995.

[13] Jim Gray (Ed.), The Benchmark Handbook for Database
and Transaction Processing, 2nd edition, Morgan Kauf-
mann, San Mateo, 1993.

[14] D. James Gemmel, Harrick M. Vin, Dilip D. Kandlur, P.
Venkat Rangan, Lawrence A. Rowe, Multimedia Storage
Servers : A Tutorial, IEEE Computer, pp. 40-49, May
1995.

[15] Technical Reports ESPRIT Long Term Research Project
Hermes (Foundations of High Performance Multimedia
Information Management), No. 9141, [www.ced.tuc.gr/
hermes/]

[16] Silvia Hollfelder, Achim Kraiß, Thomas C. Rakow, A cli-
ent–controlled Adaption Framework for Multimedia Sys-
tems, Technical Report No. 1022, GMD–IPSI, Sankt Au-
gustin, September 1996.

[17] Torben Hagerup, Christiane Rüb, A Guided Tour of Chern-
off Bounds, Information Processing Letters 33, pp.
305-308, 1989.

 10

[18] Raj Jain, The Art of Computer Systems Performance Anal-
ysis, Wiley, 1991.

[19] Leonard Kleinrock, Queueing Systems, Volume 1: Theory,
Wiley, 1975.

[20] Kin K. Leung, Martin Eisenberg, A single–server queue
with vacations and non-gated time-limited service, Perfor-
mance Evaluation 12, pp. 115-125, 1991.

[21] Kin K. Leung, David M. Lucantoni, Two vacation models
for token-ring networks where service is controlled by tim-
ers, Performance Evaluation 20, pp. 165-184, 1994.

[22] Randolph Nelson, Probability, Stochastic Processes, and
Queueing Theory : The Mathematics of Computer Perfor-
mance Modeling, Springer, 1995.

[23] Banu Özden, Rajeev Rastogi, Avi Silberschatz, Disk Strip-
ing in Video Server Environments, Proceedings IEEE In-
ternational Conference on Multimedia Computing and
Systems, June 1996.

[24] Yen–Jen Oyang, A tight upper bound of the lumped disk
seek time for the scan disk scheduling policy, Information
Processing Letters 54, pp. 355-358, 1995.

[25] A. L. N. Reddy, Jim Wyllie, I/O issues in a multimedia sys-
tem, IEEE Computer, 27(3), pp. 69–74, March 1994.

[26] Chris Ruemmler, John Wilkes, An Introduction to Disk
Modelling, IEEE Computer, 27(3), pp. 17-28, March 1994.

[27] Nivo Randriam, Ulrike Wolf, A Multimedia Storage Server
for a News Archive (in German), Diploma Thesis, Depart-
ment of Computer Science, University of the Saarland,
Saarbrücken, 1996.

[28] Abraham Silberschatz, Peter Galvin, Operating System
Concepts, 4th edition. Addison–Wesley, New York, 1994.

[29] Peter Scheuermann, Gerhard Weikum, Peter Zabback,
Disk Cooling in Parallel Disk Systems, IEEE Data Engi-
neering Bulletin Vol.17 No.3, pp. 29–40, September 1994.

[30] Peter Scheuermann, Gerhard Weikum, Peter Zabback,
Data Partitioning and Load Balancing in Parallel Disk
Systems, Technical Report A/02/96, Department of Com-
puter Science, University of the Saarland, 1996, submitted
for publication.

[31] Hideaki Takagi, Queueing Analysis : A Foundation of Per-
formance Analysis, Volume 1 : Vacation and Priority Sys-
tems, North Holland, Amsterdam 1991.

[32] Peter Zabback, I/O Parallelism in Database Systems – De-
sign, Implementation and Evaluation of a Storage System
for Parallel Disks (in German), Doctoral Thesis, Depart-
ment of Computer Science ETH Zurich, 1994.

