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Abstract

Advanced multimedia applications such as digital libraries or teleteaching exhibit a mixed workload with accesses
to both ”continuous” data (e.g., video) and conventional, ”discrete” data (e.g., text/image documents). As the
fractions of continuous-data versus discrete-data requests vary over time, we consider a multimedia storage server
with both classes of data spread across all disks for dynamic load sharing. This paper develops a stochastic model
for predicting the performance of mixed multimedia workloads on a given system configuration. It focuses on
analyzing the response-time distribution for discrete-data requests under potential contention with continuous-data
requests. We derive an upper bound for the probability that the response time of a discrete-data request exceeds a
specified tolerance threshold. Experimental results from detailed simulation studies demonstrate the high accuracy
of the analytical model. Thus the model is an appropriate basis for server capacity planning.

1 Introduction

1.1 Problem Statement

Multimedia information servers that manage large vol-
umes of disk-resident video/audio data as well as text
and image data have to meet stringent performance re-
quirements. The real-time nature of “continuous” data
(C-data) like video/audio dictates that a server must
meet firm deadlines for each of the data fragments that
constitute the data stream between the server and a client
throughout the playback of an entire C-data object. For
example, a fragment may consist of all video frames that
correspond to one second of playback, and fragments
that arrive too late at the client (i.e., more than one sec-
ond after the previous fragment has started its playback)
may cause user-noticeable degradations of the playback
quality. We refer to such timing problems within C-data
streams as glitches.
The well-established notion of quality of service (QoS)
for C-data demands that glitches should either be com-
pletely avoided or that the probability or rate with which
they occur within a stream is bounded (by a very small
number, say 0.001). To guarantee the promised QoS, a
multimedia server must exert an admission control to
limit the maximum number of concurrently active C-

data streams. So, given the number of concurrently ac-
tive users as well as data and access characteristics of
an application, it is absolutely crucial that a server be
configured appropriately (i.e., should have the necessary
number of disks, amount of memory, etc.).
The server configuration problem is made significantly
harder by the fact that many advanced multimedia ap-
plications such as digital libraries or teleteaching will
exhibit a mixed workload with massive access to con-
ventional, “discrete” data (D-data) such as text and im-
age documents as well as index-supported searching in
addition to the requests for continuous data. Further-
more, with unrestricted 24-hour world-wide access over
the Web, such multimedia servers have to cope with
a dynamically evolving workload where the fractions
of C-data vs. D-data requests vary over time. Thus,
for a good cost/performance ratio it is mandatory that a
server operates with a shared resource pool rather than
statically partitioning all resources (disks, memory, etc.)
into two pools, one for each of C- and D-data.
The success of a multimedia information service crit-
ically depends on its QoS and responsiveness as per-
ceived by the users. This does, of course, include the
response time for accesses to conventional D-data, an is-
sue that has been rather neglected in the literature which
has focused almost exclusively on C-data. In this pa-
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per we study stochastic response-time guarantees for D-
data in conjunction with stochastic service-quality guar-
antees for C-data. For example, an application could de-
mand that the response time of D-data accesses does not
exceed 2 seconds with a probability of at least 90 per-
cent (i.e., bounding the tail of the response-time distri-
bution). The ultimate objective of our research is to de-
velop a method for configuring a mixed-workload multi-
media information server that meets the application’s re-
quirements on both C- and D-data while minimizing the
cost of the server. This paper focuses on the mathemat-
ical underpinnings of such a configuration tool in that it
develops an accurate analytical model for predicting the
performance and QoS of a given server configuration.

1.2 Related Work

Fairly detailed analytical models have been developed
for multimedia servers, with exclusive focus on C-data
requests, however. These models allow predicting, from
the data and storage system parameters, the maximum
number of concurrent C-data streams that the server can
sustain with either no glitch at all [1, 2, 3, 4, 5], with
a probabilistic bound on the glitch rate or related delay
metrics [6, 7, 8, 9]. In this paper we pursue the latter
kind of stochastic model, as opposed to the first type of
deterministic worst-case models. Stochastic guarantees
for service quality are tolerable for almost all multime-
dia applications; moreover, glitch situations can often
be masked or at least “smoothed” by a carefully con-
trolled, dynamic QoS adaptation (see, e.g., [10]). Fur-
thermore and most importantly, not taking into account
the stochastic nature of disk service times (variable seek
times, variable transfer rates on multi-zone disks, etc.)
and variable-bit-rate-encoded C-data would inevitably
lead to overly conservative predictions and thus poor
cost/performance ratio of a server.
Among the few papers that have given at least some
thought to mixed workloads are [11, 12] and our own
prior work [13, 14, 15, 16]. In [11] the impact of the
additional D-data requests is taken into account by re-
serving a fixed fraction of the server’s performance ca-
pacity for D-data requests. However, this is merely a
best-effort approach without any quantitative consider-
ations. In [12] disk scheduling heuristics for mixed
workloads are studied by simulation. Both [13] and
[14] were preliminary attemps to develop a stochastic
model for mixed workloads. The two approaches used
relatively crude mathematical models, had to make very
simplifying restrictions and thus ended up with fairly
inaccurate predictions. The (preliminary) conclusion of
our prior work was that one should resort to simulation
models for performance predictions. Finally, [15, 16]
completely concentrated on simulation experiments in
its study of different scheduling policies. In summary,
no sufficiently accurate analytical model has been de-
veloped so far to be practically useful as the basis for a

server configuration tool.

1.3 Contribution and Outline of the Paper

The paper’s contribution lies in developing the math-
ematical underpinnings for a configuration tool for
mixed-workload multimedia information servers. To
this end, we develop a queueing model that allows us
to predict the response time of D-data requests (subse-
quently abbreviated as D-requests) in the presence of
C-data requests (C-requests). This model complements
earlier work of ours [8] on predicting the QoS of a pure
C-data workload, The stochastic guarantees for the C-
data glitch rate that we derived there and that is summa-
rized in this paper can be carried over to the new mixed-
workload model.
In terms of its underlying mathematical techniques, the
developed queueing model builds on modeling tech-
niques for special classes of M/G/1 servers that limit
the number of served requests in a service period [17].
The derivation of the D-request response time, which is
the model’s core part, is a fundamentally new challenge,
however, because we consider an efficient SCAN policy
for the disk arm scheduling whereas the prior work has
been restricted to FCFS policies [18]. To the best of our
knowledge, the current paper is the first one that con-
siders this problem in the context of multimedia stor-
age management and solves it in a manner that is both
accurate and computationally tractable. All derivations
are carried out in terms of the Laplace transforms of the
underlying probability distributions [19, 20]. Thus we
capture entire distributions, not just mean values. In
particular, we can make quantitative statements about
the tail of the response time distribution (e.g., the 90th
percentile), using the Chebyshev inequality or the more
accurate but computationally more expensive method of
Chernoff bounds derived from the Laplace transforms
[21, 20].
The rest of the paper is organized as follows. Section 2
introduces the system architecture of a mixed-workload
multimedia data server. Section 3 summarizes the an-
alytical model for predicting the glitch rate of C-data.
Section 4 develops the queueing model that allows us
to predict the response time of D-requests. Section 5
presents experimental results from a detailed simulation
study that demonstrates the accuracy of the presented
analytic model for discrete data.

2 Architecture of a Mixed-
Workload Server

In this section, we discuss the system architecture for
which our approach is geared. Clients submit requests
for both C-data and D-data to a server. A C-data ob-
ject (e.g., a video) is composed of a sequence of frag-
ments. The delivery of such an object from the server to
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the client constitutes a producer-consumer data stream
throughout the object’s playback. D-data objects, on the
other hand, are requested as indivisible units (as far as
our model is concerned). We assume a fast and reliable
network with a performance capacity well above the ap-
plication’s bandwidth requirements, and thus disregard
network issues in this paper.
The performance metric we are considering is glitch rate
of C-requests for a given number of concurrent streams
and the response time of D-requests for a given arrival
rate. We want to derive an analytic model that allows
us to bound the probability that the response time and
the glitch rate exceeds a specified tolerance threshold.
Additional metrics such as server memory demand or
startup latency are not studied in this paper.

2.1 Data Placement

The following assumptions capture the method of
choice that has evolved in the literature (see, e.g.,
[1, 22, 23, 24, 2, 5, 3]). We consider a server with K
disks. Since compression techniques reduce the band-
width of video/audio objects substantially, we assume
that the required bandwidth per C-data stream is always
smaller than the transfer rate of a single disk. We allow
variable bandwidth both across objects and within a sin-
gle object, as commonly used compression techniques
such as MPEG-2 are based on variable-bit-rate (VBR)
encodings. Objects are partitioned into constant-time-
length (CTL) fragments such that each fragment corre-
sponds to the same fixed playback time T (e.g., one sec-
ond). Consequently, fragments vary in size even within
one object. This scheme has the advantage that the dis-
cretization of the C-data streams induces a perfectly reg-
ular, periodic access pattern on the server: one fragment
for each stream within each time unit.
Fragments are assigned to disks in a round-robin man-
ner, using coarse-grained striping so that each fragment
resides entirely on one disk. This scheme maximizes
the effective disk bandwidth while balancing the load
across all disks. In addition and most importantly, it pro-
vides perfect scalability in that the maximum number of
concurrently sustainable streams grows linearly with the
number of available disks. This holds even if the access
frequencies of C-data objects are highly skewed.
D-data objects are allocated on the disks such that the
expected I/O load for this data is balanced across all
disks. This may involve striping for large objects, with
adequately tuned striping units. For this paper, we do
not rely on any specific assumptions on the placement
and storage layout of D-data objects. As already pointed
out in the introduction, we assume that both C- and D-
data reside on the same shared disk pool, so that both
workload classes can fully exploit the space and perfor-
mance capacity of all disks. This is extremely benefi-
cial especially when the load fractions of the two classes
evolve over time.

2.2 Delivery of and Admission Control for
C-Data Streams

The data layout of C-data discussed above is exploited
by the disk scheduling, which is periodic and proceeds
in service rounds of fixed duration T that corresponds to
the playback time length of the fragments. In each round
the server needs to fetch from each disk those fragments
that need to be delivered to the clients by the end of
the next round (using server memory for intermediate
buffering). After having fetched N fragments from disk
i in one round, the server needs to fetch N fragments
for the underlying streams from disk �i� �� mod K in
the next round, where K is the total number of disks.
Not being able to fetch all the necessary fragments by
the end of a round is what causes glitches in the affected
streams.
This scheme simplifies the admission control for clients
that request to start a new C-data stream. We only have
to test that the disk that holds the first fragment of the
requested object can accomodate the additional load for
this fragment in a service round.
Given the periodic shifting of the load pattern, a pos-
itive result for this admission test will then imply that
the probability of incurring glitches is sufficiently low
in all subsequent rounds as well. This stochastic con-
sideration must, however, take into account the variable
size of fragments (and further variable parameters such
as seek times and rotational delays) based on knowledge
of its statistical distribution [8].
Another important property of this admission control
scheme is that it needs to consider only the load on a
single disk. The regularity of the overall load pattern en-
sures that the result of the sustainability test carries over
to the entire pool of parallel disks. For the same reason,
it is sufficient that we consider only a single disk in the
performance-prediction model developed in this paper.

2.3 Disk Scheduling

Once the length T of a service round is fixed (typically
in the order of 1 second), the actual disk scheduling for
C-requests is straightforward. All fragments that need
to be fetched from a disk by the end of a round are
known at the beginning of the round, so that we can
employ a SCAN algorithm (also known as “elevator” or
“sweep” algorithm) for the disk arm movement, in order
to minimize seek times. With this algorithm, requests
are sorted according to their seek position on the disk
and are served with one sweep of the disk arm.
A number of options are possible, however, when we
add D-requests to be served as well. Our earlier work in
[15] has discussed these options in a taxonomical man-
ner and identified the most promising schemes. The
scheme that we consider in the current paper is a mixed
SCAN algorithm that includes a number of D-requests
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Figure 1: Illustration of the mixed SCAN Disk Scheduling Policy

in the disk sweep of one round. However, the number
of D-requests per sweep is limited by a system parame-
ter M such that the service time of all requests (for both
C- and D-data) does not exceed the given round length.
In addition, to be able to plan the disk schedule on a
round by round basis, i.e. to determine the sequence
of requests in the disk sweep at the beginning of each
round, we employ a gated scheduling discipline for D-
requests. This means that only those D-requests are el-
igible for inclusion in the disk sweep that have arrived
by the beginning of the round. Furthermore we assume
that all requests that are selected in FCFS order at the
beginning of a round will be served within this round.
Requests that arrive in the middle of a round will be
considered for service only in the next disk sweep, i.e.
in the next round. This delay is not critical given that
the typical round length is one second. The case to be
avoided is that too many D-requests are delayed by mul-
tiple rounds because of the high overall load (or, equiv-
alently, too few disks for the given load). This case can
happen as illustrated by the scenario shown in Figure
1. In this figure, the arrivals and departures (i.e., service
completions) of D-requests are depicted by arrows. The
execution of C- and D-requests is shown in the form of
shaded boxes (light for C-requests, dark for D-requests)
whose lengths correspond to disk service times. The
numbers in parentheses denote the disk cylinder for a
request. The time span between the arrival and depar-
ture of a D-request is its response time. As shown in the
example, request rD� is delayed by more than one round
and request rD� is served ahead of request rD� because
of the SCAN algorithm.

3 An Analytic Model for the Glitch
Rate

This section briefly summarizes our analytic model
for the C-data glitch rate, originally developed in [8],
putting the model for the D-data response time into per-
spective.
The goal of analytic modeling is to predict the ser-
vice quality of a continuous data stream a under given
data partitioning, data placement and disk scheduling

scheme, given workload parameters such as the num-
ber of concurrent streams, the size of fragments, and so
on. Such a prediction is of crucial importance for two
reasons:

� Admission control:
to calculate the workload that can be sustained
for a given configuration and service quality de-
mands, so as to determine how restrictive the ad-
mission control needs to be

� System configuration:
to calculate the number of disk resources needed
to sustain a given workload under specified ser-
vice quality demands

Service quality can be measured as the number or rate
of video/audio frames that are not delivered to the
client according to the video/audio object’s timeline for
smooth playback, often casually referred to as “hic-
cups”. As far as the server is concerned, these kinds
of errors are produced when fragments are not retrieved
and delivered just in time, i.e., during the time window
of a scheduling round. The goal then is to either guar-
antee that no glitches occur or that a limited numbers of
glitches occur with a very small, more or less negligi-
ble probability. Once these service quality demands are
specified, analytical modeling then serves to derive the
maximum acceptable number of concurrent streams.
The developed stochastic model gives service quality
guarantees for a continuous data server with multi-
zone disks and VBR encoded continuous data objects.
Here workload and disk characteristics are modeled in
a stochastic way using Laplace transforms and Chernoff
bounds for the tail of a probability distribution [21, 20].
This approach goes significantly beyond the much sim-
pler models published so far. Our approach captures all
details of the disk system in a realistic manner and pro-
vides very tight stochastic bounds, thus allowing us to
provide a specified service quality guarantee with much
less disk resources than the previously published mod-
els. The presentation here gives a general outline. For a
detailed derivation of formulas see the full paper in [8].
The overall goal is to bound the probability that the
retrieval of a continuous data fragment does not meet
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its delivery deadline imposed by the real time play-
back constraints. This probability allows predicting and,
consequently, bounding the rate at which the presenta-
tion of a continuous data object may suffer “glitches”.
Conversely, with a specified tolerance threshold glitch-
probability, it is possible to determine the minimum
amount of resources (i.e., number of disks) that are nec-
essary to guarantee this quality of service specification.

3.1 Data Model

It is assumed that the data has been compressed using
variable bit-rate techniques such as MPEG-2. Due to the
normalization of all fragments to the same time length
(i.e., the CTL partitioning) the fragment sizes vary. It is
shown in [25, 26] that the distribution of fragments sizes
can be statistically described by a lognormal or Gamma
distribution [19]. In the following analysis, the proba-
bility density fsizeC of the fragment size distribution is
given by

fsizeC �
���x����e��x

����
(1)

where � denotes the Gamma function. The parameters
� and � depend on the characteristics of the continuous
data and are chosen based on the mean value of frag-
ment sizes E�S� and the variance V ar�S�.

� �
E�S�

V ar�S�
� �

�E�S���

V ar�S�
(2)

3.2 Disk Model

Multi-zone disks group adjacent tracks into a number of
zones. Each zone has a fixed number of sectors that are
allocated in a track, but this number differs between dif-
ferent zones. Inner zones, i.e. zones that are located near
the center of the disk, support less sectors per track than
outer zones due to the constant aerial recording density.
As the angular velocity is kept constant, outer zones pro-
vide a higher transfer rate than inner zones [27, 28].
Since typical high performance disks have a space ca-
pacity and transfer rate ratio between outer and inner
tracks of a factor of two, this is clearly an important per-
formance factor.
We assume that data is uniformly distributed over all
sectors of the disk. Therefore the variable track capacity
induces a skewed access frequency distribution for the
tracks with a higher probability of outer tracks. Given a
multi-zone disk with cz zones, a track capacity of cmin

for the innermost track and cmax for the outermost track,
and the time crot for a single revolution of the disk, the
probability density of the transfer rate is given by frate.

frate�r� �
	rcz � 	r � cmax�crot � cmin�crot
�cmin � cmax�cz�cmin � cmax��c�rot

(3)

3.3 Bounding the Total Service Time Per
Round

The total service time TN for the retrieval of N frag-
ments from a single disk in one round is the sum of
the seek time Tseek�i, the rotational delay Trot�i, and the
transfer time Ttrans�i for each fragment i. The sum of
all seek times in a round can be approximated for the
scan algorithm using a tight upper-bound constant Tseek
with

PN

i�� Tseek�i � Tseek [29] based on the concavity
of the seek time as a function of the seek distance [27].
Thus we obtain:

TN � Tseek �
NX
i��

Trot�i �
NX
i��

Ttrans�i (4)

All N random variables Trot�i are independently and
identically distributed with a uniform distribution be-
tween 0 and the time for one disk revolution. Similarly,
the random variables Ttrans�i are independently identi-
cally distributed. This distribution depends on the distri-
bution of the fragment size in equation (1) and the disk
transfer rate in equation (3) and can be computed using
a convolution-like integral.
The next step is to bound the tail probability plate of
the random variable TN . It is possible to apply Cher-
noff’s theorem [21, 20] to calculate a bound blate since
the Laplace transform T �N of TN can be calculated using
the Laplace transforms of its summands.

plate�N� t� � P �TN � t�

� inf
���

fe��tT �N ����g � blate�N� t� (5)

The right hand side of inequation (5) can be efficiently
evaluated using standard numerical methods. The in-
equation states that the total service time for N requests
exceeds the time t, e.g. the duration of a round of say 1
second, with a certain probability that is definitely less
than or equal to blate, e.g., 1 or 0.1 percent. Conversely,
once we specify the tolerated lateness probability, i.e., a
threshold value for blate, and we consider a round length
of T for t, then we can derive the maximum number
of concurrent streams per disk, N , that we can sustain
without violating the specified stochastic guarantee.

3.4 Bounding the Glitch Rate Per Stream

So far we have considered only the phenomenon of one
or more glitches occurring within one round. Our final
goal, however, is to guarantee that a single stream that
runs for a certain of rounds does not suffer more than
a specified small fraction of glitches. The first step to-
wards this goal is to calculate the probability pglitch and
its corresponding bound bglitch for the event that a cer-
tain stream suffers a glitch during a single round. We
assume that the streams that are affected by glitches are
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Figure 2: Components of the D-Request Response Time

“selected” independently among the rounds (i.e., there
is no artificial correlation across rounds in this respect).

pglitch�N�T � �
�

N

NX
k��

plate�k� T �

�
�

N

NX
k��

blate�k� T � � bglitch�N�T � (6)

The probability perror that a stream suffers g glitches
during its lifetime of C rounds is characterized by a bi-
nomial distribution. Again the tail probability can be
bounded by another variant of Chernoff’s theorem, de-
rived in [30]

perror�N�T�M� g� ��
Mbglitch�N�T �

g

�g

�

�
M �Mbglitch�N�T �

M � g

�M�g

(7)

Inequation (7) expresses the final stochastic guarantee
that can be given by the developed model. We can as-
sure that the probability that a stream with a duration
of C rounds suffers more that g glitches, given a total
load of N concurrent streams and a round length of T ,
will be less than the right hand side of inequation (7).
Conversely, for a specified error probability threshold
berror�N�T�C� g�, and fixed values of T , C, and g, it
is possible to derive the maximum feasible number of
concurrent streams, Nmax, characterized by:

Nmax � max�N 
 perror�N�T�C� g� � berror� (8)

For the validation of the model, detailed simulations
were carried out, and the simulation results were com-
pared to the values derived from formula (7) and (8).
For details see [8]. It turned out that the derived analytic
bound is conservative with only a small deviation com-
pared to the simulation results. In contrast, deterministic
worst-case models would significantly overestimate the
total service time per round and would thus end up sub-
stantially underloading the disk resources. As shown in
[8] for the same scenario a deterministic model looses
more than a factor of two in terms of throughput com-
pared to a stochastic model.

4 Analytic Model for the Response
Time

In this section we develop a stochastic model for the
response time of D-requests with the method of supple-
mentary variables [31, 17]. From the viewpoint of a D-
request, we can distinguish three different types of ser-
vice rounds: a D-request arrives in its arrival round, and
may have to wait several intermediate rounds before it is
finally served in its departure round. We assume a gated
service policy, i.e., the set of D-requests to be served in
a round is determined at the beginning of the round.

Given the three types of rounds, the response time of a
D-request rD is given by the sum of the times that rD
spends in each type of round as follows (see Figure 2):

1. After arrival, rD has to wait for its arrival round
to finish. This time is denoted by the random vari-
able A.

2. Depending on the server load, rD has to wait zero
or more complete intermediate rounds, in which
C-requests and previously queued D-requests are
served. We model this time by the random vari-
able I . Future arriving D-requests do not influ-
ence the number of intermediate rounds due to the
FCFS gated selection strategy.

3. In the departure round of rD , a number of C-
requests and D-requests are included in a SCAN
schedule (i.e., a disk sweep). The total service
time of the requests that precede rD in the SCAN
order plus the service time of rD is denoted by the
random variable D.

The random variables I andD depend on the D-requests
which are in the queue at the arrival point of rD , and on
the C-requests to be served in rD’s intermediate rounds
and in its departure round. As discussed in Section 2,
we use a number limit for the C-requests and D-requests
to be served in a round. Let M be a system parameter
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that denotes the maximum number of D-requests that
can be served per round. For the tractability of the fol-
lowing analysis, we assume that the waiting queue for
D-requests has a finite capacity with Lmax places. Let
PB denote the blocking probability, i.e., the probability
that a newly arriving request finds the queue already full
and is rejected. We denote the length of the D-request
queue (at arbitrary time points) by the random variable
L.
In the following we denote the probability density func-
tion fX�x� of a random variable X as P �X � x�.
This is a slight misuse of notation for continuous ran-
dom variables, but it makes formulas more readable and
avoids lengthy subscripts, especially when we consider
joint distributions and conditional distributions. A com-
plete list of all variables used in our analysis can be
found in Appendix.
For the response time R of D-requests that are not
blocked we obtain:

P

�
R � r

���� request not
blocked

�

� P

�
A� I �D � r

���� request not
blocked

�

�
�

�� PB
P
h
A� I �D � r �

request not
blocked

i

�
�

�� PB

Lmax��X
l��

Z T

�

P �I �D � r � t

�A � t � L � l� dt

�
�

�� PB

Lmax��X
l��

Z T

�

P �I �D � r � t j

A � t � L � l� � P �A � t � L � l� dt (9)

In what follows we conceptually “trace” the processing
stages of a D-request rD . Let Il, Dl, and Al denote
the random variables corresponding to I , D, A, respec-
tively, under the condition thatL � l holds for the queue
length at the arrival point of the request. Il and Dl are
independent of rD’s arrival time within its arrival round.
Hence we obtain:

P
h
R � rj

request not
blocked

i
(10)

�
�

�� PB

Lmax��X
l��

Z T

�

P �Il �Dl � r � t�

�P �Al � t� dt (11)

For a fixed l the integral in equation 11 corresponds to
the convolution of the independent random variablesAl,
Il and Dl. For the Laplace transform of the response
time of D-requests, we therefore obtain:

R��s� �
�

�� PB

Lmax��X
l��

A�l �s� � I
�
l �s� �D

�
l �s� (12)

Due to the definition the Laplace transform of every
probability distribution must yield 1 for s � �, we can
derive from equation 12 the blocking probability for a
request to be rejected because of a full queue:

lim
s��

R��s� � ��

PB � �� lim
s��

Lmax��X
l��

A�l �s� � I
�
l �s� �D

�
l �s� (13)

The Laplace transform of Il is given by:

I�l �s� �

Z �

�

e�sxP �Il � x� dx

�

Z �

�

e�sxP �I � x j A � t � L � l� dx

� e�sT�b
l
M
c (14)

The distribution of Dl depends on the service strategy
in the departure round. The Laplace transform of Dl

for the mixed SCAN strategy that we employ will be
derived in the following subsections.
The Laplace transform A�l of Al is defined as

A�l �s� �

Z T

�

e�stP �Al � t�dt

�

Z T

�

e�stP �A � t � L � l� dt (15)

For deriving A�l , we need the distribution of the queue
length at the beginning of a round, as derived in the next
subsection.

4.1 Queue Length Distribution at the Be-
ginning of a Round

To derive the distribution of the queue length at the be-
ginning of a round, we consider an embedded Markov
chain with the starting points of service rounds as em-
bedding points. At each of the time points, t �
ft�� t�� � � � g, marking the beginning of a new round, the
system state is given by the number of D-requests in the
waiting queue, denoted as Lti . The steady state proba-
bilities of this system are defined as follows:

pn � lim
i��

P �Lti � n� (16)

We assume that at the beginning of each round, up to M
requests are removed from the queue for service within
the round. We disregard in our analysis the case that the
total service demand of these M requests exceeds the
round length. The value of M can be set such that that
case will happen only with extremely low probability
and is thus indeed negligible. Incoming D-requests that
arrive during a round are put into the waiting queue and
must wait at least for the beginning of the next round.
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Let ak be the probability that k requests arrive during
a round of length T . Assuming that the arrivals follow
a Poisson process with arrival rate � this probability is
given by

ak � P
h
k arrivals during a
round of length T

i
�

��T �k

k�
� e��T (17)

As we already stated the waiting queue is finite with
Lmax places. The steady state probabilities must satisfy
the following three Chapman-Kolmogorov equations
(also known as flow balance equations) for the Markov
chain at hand:

for n � Lmax 


pn � an �

MX
i��

pi �

min�M�n�Lmax	X
i�M��

pi � an�i�M

for n � Lmax 


pn �

MX
i��

pi �

�X
i�Lmax

ai �

LmaxX
i�M��

pi �

�X
j�Lmax�i

aj�M

and
LmaxX
i��

pi � �

The linear equations above can be used to solve for the
unknown pn. Since they form a set of linear dependent
equations, the normalization constraint must be used to
replace one of the other equations to obtain a solution
[19, 20].

4.2 Analysis of the Arrival Round

Based on the steady state probabilities pi, we can now
derive A�l . The number L of requests in the queue
at the arrival of a new request rD is determined by
the queue length at the beginning of the arrival round
plus the number of requests that arrive in the arrival
round before rD. We denote the number of arrivals in
a time period of length t by O�t�, and thus the num-
ber of arrivals within the arrival round before the ar-
rival of rD happens is O�T � A�. We then obtain
P �Al � t� � P �A � t � L � l� under the assump-
tion that all elected requests at the beginning of a round
will be served within this round by considering the two

cases:

for l � Lmax 


P �A � t � L � l� �

MX
j��

pj P �O�T �A� � l � A � t� �

min�M�l�Lmax	X
j�M��

pj P �O�T �A� � l � j �M

�A � t�
(18)

for l � Lmax 


P �A � t � L � l� �

MX
j��

pj���

Lmax��X
m��

P �O�T �A� � m � A � t�� �

LmaxX
j�M��

pj���

Lmax�j�M��X
m��

P �O�T �A� � m � A � t��

(19)

P �O�T �A� � l �A � t� in equation 18 and 19 can
be calculated based on the Poisson arrival of D-requests:

P �O�T �A� � l � A � t�

� P �O�T �A� � l j A � t� � P �A � t�

�
�l �T � t�

l

l�
� e���T�t	 �

�

T
(20)

Its Laplace transform is derived as follows and solved in
[17]. We obtainZ T

�

e�stP �O�T �A� � l � A � t� dt

�

Z T

�

e�st
�l �T � t�l

l�
� e���T�t	 �

�

T
dt

�
�

��� s�T

�
e�sT

�
�

�� s

�l
�

lX
m��

am

�
�

�� s

�l�m�
(21)

The Laplace transformA�l of Al in equation 15 can now
be derived in a straightforward manner by substituting
the result of equation 21 into the Laplace transform of
P �A � t � L � l� according to equations 18 to 19, and
performing some algebraic simplifications.

4.3 Analysis of the Departure Round

In this section, we derive the Laplace transform of the
time Dl that a request spends in its departure round un-
der the condition that the queue length L at the time
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of its arrival was l. We consider a mixed SCAN disk
scheduling policy that performs a single sweep over the
disk serving both D-requests and C-requests in the order
of their cylinder numbers.
LetB�

D denote the Laplace transform of the service time
B for a single D-request rD, including rotational delay
and transfer time, B�

C is the analogous Laplace trans-
form of the service time for a C-request.
To obtain the seek time distribution for the SCAN algo-
rithm we have to consider two cases: the initial seek to
the cylinder of the first request and the subsequent seeks.
Let B�

scan��n� s� and B�
scanX�n� s� denote the Laplace

transforms of these random variables. The parameter n
indicates that the seek time between two successive re-
quests in a SCAN depends on the number of requests,
n, in the SCAN. We obtain the following term for D�

l

(LT stands for Laplace transform):

D�
l �s� �

MX
d���

qd�

d��NX
p��

�

d� �N
�

min�p���d���	X
d��max���p�N��	

pred�N� d�� p� d�� �

�
LT of

service time

�

(22)

�
LT of

service time

�
� B�

scan��d� �N� s�

� �B�
scanX�d� �N� s��

p��

� �B�
D�s��

d��� � �B�
C�s��

p���d� (23)

In the outermost sum we iterate over the number of D-
requests that are served before the request in focus in
the departure round. qi denotes the probability that in
the departure round of rD , the number of D-requests
to be served in that round is i. qi is obtained from the
steady state probabilities pn by weighting them with the
number of D-requests served in the round:

i � � � � �M � � 


qi �
i � piPM��

n�� n � pn �M � ���
PM��

n�� pn�

otherwise:

qM �
M � ���

PM��
n�� pn�PM��

n�� n � pn �M � ���
PM��

n�� pn�

Note that the case of M D-requests served in a round
needs special treatment, as M D-requests are served if
the queue length at the beginning of the round is at least
M .
The sum in the middle of Equation 22 iterates over the
position a D-request can take. There are d� � N pos-
sible positions. The innermost sum iterates over the

number of possible D-request and C-request predeces-
sors (in the SCAN) at a given position and a given num-
ber of D-requests in the departure round. Assuming that
there are N C-requests and d� D-request to be served
in the departure round of a D-request rD, rD can have
up to d� �N � � predecessors that are served before
rD depending on its position in the SCAN. By num-
bering these positions from � to d� � N , we can cal-
culate the probability pred�N� d�� p� d�� that at a dis-
tinct position p the D-request has d� D-requests and
�p���d�� C-requests as predecessors. The probability
pred�N� d�� p� d�� can be computed combinatorially:

pred�N� d�� p� d�� ��
d�

d���

��
N

p���d�

�
�p� ����d� �N � p���d� � ��

�d� �N � ���d�
(24)

The numerator of equation 24 multiplies the number of
possibilities to select d� � � D-requests out of d� with
the number of possibilities to select p���d� C-requests
out of N . These requests are placed on the SCAN po-
sitions � � � � p. There are �p� ��� permutations possible
preceding position p and �d� � N � p�� following po-
sition p. Furthermore there are �d� � �� possibilities to
select a D-request for position p. The denominator of
equation 24 calculates the total number of possibilities
to place d� D-requests and N C-requests on d��N po-
sitions under the condition that a D-request can be found
at position p.
Finally, in order to completely determine D�

l �s� for the
mixed SCAN service policy, the last two steps are to
compute the service time distributions for D-requests
and C-requests as well as the underlying seek time dis-
tributions. This is done in the next two subsections.

4.4 Service Time

The service time for D- and C-requests consists of three
components, the rotational delay, the transfer time and
the seek time. In this section we derive Laplace trans-
forms for the transfer and the rotational delay, the seek
time is considered separately in the next section.
We assume the rotational delay to be uniformly dis-
tributed between 0 and crot. The Laplace transform
B�
rot of this distribution is given by [19, 20]:

Brot�t� �
�

crot
	

B�
rot�s� �

Z crot

�

e�stBrot�t� dt �
�� e�s�crot

s � crot
(25)

Let fsizeD be the density of the request size distribu-
tion for D-requests. Assuming a constant transfer rate
ctrans, the Laplace transform of the transfer time distri-
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bution is given by

B�
readD

�s� �

Z �

�

e�stfsizeD �ctrans � t� � ctrans dt

(26)

The integral can be symbolically solved for typical re-
quest size distributions such as Gamma distributions [8].
Multiplying the Laplace transform of these two compo-
nents yields the Laplace transform of the service time
excluding the seek time

B�
D�s� � B�

rot�s� �B
�
readD

�s� (27)

B�
C found in equation 23 can be calculated in the same

way using the C-request specific request size distribu-
tion fsizeC .

4.5 Seek Time

In a SCAN, the seek distance between two successive
requests, depends on the number of requests, n, that
are served in the disk sweep. This is expressed in the
following by the subscript n. We assume that the disk
has ccyl cylinders numbered from � to ccyl. First we
consider the seek time distribution for the seek between
cylinder 1 of the disk and the cylinder where the data
of the first request in the SCAN resides. The Laplace
transform B�

scan��n� s� of this distribution can be com-
puted using the seek distance distribution fscan��n� d�
and applying the substitution rule for integrals:

B�
scan��n� s� �

seek�ccyl��	Z
seek��	

e�stfscan��n� seek
���t��

� �seek�����t� dt (28)

The seek time function seek�x� used in equation 28
computes the seek time for seeking over x cylinders.
Seek time functions for modern disks can be found in
[27] (see also Section 5). Its inverse, that is, the func-
tion that computes the seek distance for a given seek
time, is denoted by seek���t�. The first derivative of
the inverse is given by �seek�����t�. The seek distance
distribution fscan��n� d� can be computed combinatori-
ally as follows.
Assume that there are n requests (r�� r�� � � � � rn) or-
dered by increasing cylinder numbers (cyl�r�� �
cyl�r�� � � � � � � cyl�rn�). If the seek distance be-
tween cylinder 1 and the cylinder of request r� is d
then there are

�
ccyl�d��

n��

�
possibilities to place the re-

maining n � � requests on the disk cylinders, provided
that all requests are placed on different cylinders. This
assumption does not cause noticeable inaccuracies as
the probability that two requests hit the same cylinder
is negligibly small considering typical values for ccyl
[27] (see also Section 5). For each of these possibilities

there are n� possible configurations for an ordered tu-
ple consisting of the cylinder numbers of the requests
�cyl�ri��� � � � � cyl�rin��. The total number of possi-
bilities to place n requests on ccyl cylinders without
having two requests on the same cylinder is given by:
ccyl��ccyl�����ccyl�	��� � ���ccyl�n��� �

ccyl

�ccyl�n	


.
This corresponds to the number of ordered n-tuples of
different elements from a set of ccyl elements. So the
seek distance density for the first seek in the SCAN al-
gorithm starting from cylinder 1 is given by

fseek��n� d�

� P

�
seek distance of 1st
seek is d cylinders

����n requests
in SCAN

�

�

�
ccyl � d� �

n� �

�
� n�

�
ccyl�

�ccyl � n��
(29)

The seek distance distribution fscanX between two suc-
cessive requests in the SCAN and thus the Laplace
transform B�

scanX of the seek time between two re-
quests can be derived in a similar way. If the dis-
tance between r� and r� is d cylinders, then there are
ccyl � �n � d� � 	 possibilities to place request r� and
request r� on ccyl cylinders, provided that all requests
are placed on different cylinders.
The remaining �n � 	� requests can be placed on all
remaining cylinders with cylinder numbers greater than
the cylinder number of request r�. There are

�
ccyl�d�i
n��

�
possibilities to assign these �n�	� requests to cylinders
if request r� resides on cylinder i. For each of these
possibilities there are n� possibilities to create ordered
n-tuples consisting of the cylinder numbers of the re-
quests �cyl�ri��� � � � � cyl�rin��. Now the total number
of possibilities to place n requests on ccyl cylinders un-
der the condition that the distance between the request
r� and r� is d is the sum of all possibilities described
above:

Pccyl��n�d	��
i��

�
ccyl�d�i
n��

�
� n� . Since the prob-

ability of a seek distance of d between two successive
requests is the same for all pairs of successive requests,
we can use the above considerations for request r� and
request r� to derive the seek distance density

fscanX�n� d�

� P

�
seek distance between two

requests is d cylinders

����n requests
in SCAN

�

�

ccyl��n�d	��X
i��

�
ccyl � d� i

n� 	

�
� n�

�
ccyl�

�ccyl � n��

For B�
scanX we obtain:

B�
scanX�n� s� �

seek�ccyl��	Z
seek��	

e�stfscanX�n� seek���t��

� �seek�����t� dt (30)
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number of cylinders ccyl ����

transfer rate ctrans ���� [MBytes/s]

revolution time crot ���� [ms]

seek time function

seek	d
 �

�
�����E��  �����E��

p
d �s� � d � ����

�����E��  ���E��d �s� � d � ����

Table 1: Disk Parameters

D � requests

fsizeD 	x
 � �

�
p
��� e

� �x����

���

� � ������ � � �����

C � requests

fsizeC 	x
 �
���x����

����
e��x

� � ������
�������

� �
�
������
������

��

Table 2: Request Size Distributions

In the derivation of B�
scanX�n� s� and B�

scan��n� s� we
ignored the fact that there could be seeks within a re-
quest because the required time for intra request seeks
is very small.

4.6 Putting Everything Together

In the previous subsections, we have derived all compo-
nents of the Laplace transform R� of the response time
distribution of D-requests. As the Laplace transform of
a random variable contains all information about its dis-
tribution, we have thus achieved our goal with regard
to predicting the performance of D-requests in a mixed-
workload server.
However, from the Laplace transform of a random vari-
able one can not directly obtain the probability that a re-
sponse time of a D-request exceeds a specified tolerance
threshold. In general, this requires inverting the Laplace
transform. Unfortunately, complex Laplace transforms
can not be easily inverted. This is also the case for the
results derived in this paper. However, one can eas-
ily derive specific results like the mean value and the
second moment (and thus the variance) of a random
variable X from its Laplace transform X� as follows
[19, 20]:

E�X � � �
dX�

ds
��� E�X�� �

d�X�

ds�
��� (31)

In order to bound the tail of the response-time distribu-
tion (e.g., its 90th or 99th percentile), Chernoff’s the-
orem can be used. Namely, the following inequation
holds [21, 20]:

P �R � r� � inf
���

f e��tR����� g 
� inf
���

f h��� g

(32)

For the given form of h, differentiating h and solving
h� � � for � yields the optimum value of � to obtain the
tightest possible bound in the Chernoff inequation.
Given this bound on the tail of the response time distri-
bution for D-requests, we are ready to configure multi-
media servers with mixed workloads such that exceed-
ing a certain tolerance threshold for the response time
of D-requests occurs only with a specified, very small
probability.

5 Experimental Validation

5.1 Simulation Testbed

Our experimental testbed consists of a synthetic load
generator, a storage server with a single disk that em-
ploys the mixed SCAN scheduling algorithm of the
queueing model, and a detailed simulation of the disk
considering seek time, rotational and transfer delays.
The disk parameters are given in Table 1. The distri-
butions of the request sizes for C- and D-requests are
given in Table 2. These values reflect typical MPEG-2
data with a mean bandwidth of ��MBit/s and Gamma
distributed request sizes for C-requests. We assumed
that D-request sizes are Normal distributed with a mean
of 	����� Bytes and a standard deviation of �����.
In contrast to our analytical model we did not restrict
the waiting room for incoming D-requests (so that re-
quests were never rejected) and we allowed requests to
the same cylinder within the same round.

5.2 Results

We studied two scenarios: the first one with a high
C-load and a low D-load and the second one with re-
versed roles. In both cases we varied the arrival rate
�D of D-requests up to a maximum sustainable rate and
compared the mean values E�R� and the second mo-
ments E�R�� of the D-request response time that were
measured in the simulations versus the analytical pre-
dictions. In the analytical model, the maximum queue
length Lmax was set to � �M to get a blocking proba-
bility below ����. All symbolic computations (substitu-
tions of equations, summations, etc.) were implemented
in Maple.

In the first scenario, the maximum number of D-
requests,M , served in one round was set to �. The value
for N , the number of C-requests that are served in each
round, was also set to �. The results of the simulations
versus the analytical predictions are shown in Table 3.
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�D �s��� 4 5 6 7

E�R� �s� (simulation) 0.8839 0.9185 0.9963 1.2384
E�R� �s� (analytic) 0.8857 0.9196 0.9950 1.2212

E�R�� �s�� (simulation) 0.9183 0.9913 1.1731 1.8968
E�R�� �s�� (analytic) 0.9225 0.9957 1.1715 1.8071

Table 3: Analytically Predicted vs. Measured Response Time (M � �, N � �)

� �s��� 7 8 9 10 11 12 13 14

E�R� �s� (simulation) 0.8131 0.8285 0.8462 0.8656 0.8935 0.9374 1.0235 1.2850
E�R� �s� (analytic) 0.8135 0.8297 0.8477 0.8692 0.8980 0.9423 1.0267 1.2573
E�R�� �s�� (simulation) 0.7794 0.8083 0.8420 0.8805 0.9370 1.0319 1.2372 2.0631
E�R�� �s�� (analytic) 0.7828 0.8124 0.8460 0.8874 0.9446 1.0384 1.2381 1.8943

Table 4: Analytically Predicted vs. Measured Response Time (M � ��, N � �)

In the high D-load scenario the maximum number of
D-requests, M , was set to ��, and the number of C-
requests served in each round, N , was set to �. The
results are shown in Table 4.
Both tables show that the predictions of the analytical
model are highly accurate; the relative error is consis-
tently in the order of one percent. The error becomes
larger only when the arrival rate �D of D-requests ap-
proaches the saturation point of the disk (i.e., with the
disk utilization becoming dangerously close to ��� per-
cent). Overall the experimental results demonstrate that
the developed analytical model is highly accurate for re-
alistic cases.
In addition to the mean response time, we computed
the probability that the response time of D-requests ex-
ceeds a given threshold using Chernoff’s bound. Table
5 shows the results for a response time threshold of ���
seconds with M set to �� and N set to �, i.e., the same
values as used for the mean response time in Table 4.
The analytical values are derived based on equation 32.
They are compared with the results of our simulation.
The goal is to bound the tail of the response time dis-
tribution such that less than � percent of the D-requests
exhibit response times higher than ��� seconds. Using
our analysis this goal can be achieved for a maximum ar-
rival rate of �� D-requests per second, whereas the sim-
ulation shows that an arrival rate of �� D-requests per
second can be sustained. So the analytic prediction con-
servatively stays below the true upper bound, but within
reasonable limits.

6 Conclusion

The developed analytic performance-prediction model
can form the basis of a capacity planning and server
configuration tool. In particular, the model can be used
for determining the minimum number of server disks,
that are needed to meet the application’s specified per-

formance (i.e., D-request response time) and QoS (i.e.,
C-stream glitch rate) requirements.
Our current scheduling model is somewhat conserva-
tive as it considers a gated service for D-requests with
a given limit on the number of D-requests served in a
round. For low to moderate C-load, better response
time of D-requests can be achieved by including them
in the disk SCAN incrementally as they arrive (i.e., even
within their arrival round) [15]. The analytic model de-
veloped in this paper yields a conservative bound with
regard to the performance of such a dynamic and incre-
mental scheduling policy. So the presented configura-
tion method may overshoot a bit with regard to the re-
quired number of disks. More research is needed, how-
ever, to investigate if the more sophisticated scheduling
policy is analytically tractable.
Although, in technical terms, our analytical model fo-
cuses on the required number of disks, the analysis im-
plicitly considers also other factors in the overall server
cost. The number of disks attached to a server de-
termines how much expensive interconnect hardware
like I/O boards are required to really exploit the disk
I/O bandwidth, and ultimately, the server model that is
needed. So minimizing the number of disks for given
performance and QoS requirements of an application is
not just for the sake of good engineering practice, but
can lead to substantial cost savings in many installations
of a multimedia information server.
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Appendix: List of Used Symbols

A random variable for the time a D-request spends until its arrival round ends
C duration of a single stream
D random variable for the time a D-request spends in its service round
I random variable for the time a D-request spends until its service round begins
Lti queue length at beginning of round i
L queue length at arbitrary point of time
Lmax maximum length of D-request waiting queue
MD maximum number of D-requests served in a single round
MC constant number of C-requests served in each round per disk
N number of C-requests per round
Nmax maximum number of streams such that QoS can be guaranteed
O	t
 random variable for the number of D-request arrivals in time period of length t
R random variable for the response time of a D-request
S random variable for size of fragments
T round length = playback time of a single fragment
TN total service Time for the retrieval of N fragments
Trot�i rotational delay of i-th request in round
Tseek�i seek time of i-th request in round
Ttrans�i transfer time of i-th request in round
Tseek upper-bound of all seek times in a round
A�l Laplace transform of joint probability P �L � l �A � t�

B�D Laplace transform of rotational delay plus transfer time for a D-request
B�C Laplace transform of rotational delay plus transfer time for a C-request
B�scan��n Laplace transform of SCAN seek time for first seek with n requests in SCAN
B�scanX�n Laplace transform of SCAN seek time with n requests in SCAN
B�rot Laplace transform of rotational delay
B�readD Laplace transform of transfer time for a D-request
B�readC Laplace transform of transfer time for a C-request
D�l Laplace transform of conditional probability P �D � x j L � l � A � t�

I�l Laplace transform of conditional probability P �I � x j L � l � A � t�

R� Laplace transform of R
T �N Laplace transform of TN
ak probability for k arrivals during a round of length T
berror chernoff’s bound on the probability perror
bglitch bound of probability pglitch
blate chernoff’s bound on the tail probability plate
ccyl number of disk cylinders
cmin minimum track capacity for multi-zone disk
cmax maximum track capacity for multi-zone disk
crot maximum rotational delay
ctrans constant transfer rate of single-zone disk
cz number of zones for multi-zone disk
frate density of transfer rate for multi-zone disk
fscan��n density of seek distance distribution for first seek in SCAN with n requests
fscanX�n density of seek distance distribution for subsequent seeks in SCAN with n requests
fsizeD density of D-request size distribution
fsizeC density of C-request size distribution
PB blocking probability
perror probability that a stream suffers a glitch during a single round
pglitch probability that a stream suffers a glitch during a single round
plate tail probability of the random variable TN
pn steady state probability P �Lti � n�

qi probability for serving i D-requests in a round
ti time point at beginning of round i
seek	d
 seek time function, calculates seek time for a given seek distance d
seek��	t
 inverse seek time function, calculates seek distance for a given seek time t
� arrival rate of D-requests per disk
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