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ABSTRACT

Most multimedia applications require storage and retrieval of large amounts of continuous and 
discrete data at very high rates. Disk drives should be servicing such mixed workloads 
achieving low response times for discrete requests, while guaranteeing the uninterrupted 
delivery of continuous data. Disk scheduling algorithms for mixed workloads, although they 
play a central role in this task, have been overlooked by related multimedia research efforts, 
which so far have mostly concentrated on the scheduling of continuous requests only. The 
focus of this paper is on efficient disk I/O scheduling algorithms for mixed workloads in a 
multimedia storage server. We propose novel algorithms, a taxonomy of relevant algorithms, 
and study their performance through experimentation. Our results show that our proposed 
algorithms offer drastic improvements in discrete request average response times, low 
response-time variability, while serving continuous requests without interruptions.

1 INTRODUCTION

Multimedia storage servers for many applications (such as digital libraries, news-on-demand, teleteaching, etc.) will 
have to manage mixed-workloads containing continuous data requests (e.g., for video and audio) and discrete data 
requests (e.g., for text or image data). The performance requirements that have to be met are very stringent and 
request-type specific. Each continuous data fragment must be delivered within a specified time limit, in order to avoid 
interruptions in the flow of data, termed hiccups or glitches. At the same time, the server must ensure good 
performance for discrete requests (such as low response times, low response-time variance, etc.). Offering high 
performance to both types of requests is a formidable challenge which disk scheduling algorithms must face. 
However, disk scheduling algorithms for mixed workloads have been largely overlooked by related multimedia 
research efforts, which so far have mostly concentrated on the scheduling of continuous requests only. With this paper 
we attempt to fill this gap.

The organization of the paper is as follows. In the rest of this section we briefly review related work, describe the 
system model, and define the problem at hand. In section 2 we develop new scheduling algorithms, motivate their 
usefulness, and present a taxonomy. The simulation-based testbed and the performance evaluation of the proposed 
algorithms are presented in section 3. The paper is concluded in section 4

1.1 Related Work

1.1.1 Disk Scheduling Algorithms

Early scheduling algorithms focused on reducing seek times. The Shortest Seek Time First (SSTF) algorithm [3] 
achieved this; however, it incurs a high response time variance and is starvation-bound. SCAN scheduling was also 
proposed in [3]. It serves requests in an elevator-like manner, (as it sweeps the disk in either one or both directions) 
allowing seek-time optimizations, while reducing the response time variance. In [5] the authors proposed a 
parameterized generalization of SSTF and SCAN. The V(R) algorithm operates as SSTF except that, every time it 
changes direction it adds a penalty, dependent on the parameter R and the seek distance. When R=1 (R=0) V(R) 
reduces to SCAN (SSTF). The performance of these algorithms, as well as other variations of SCAN, such as the 
LOOK algorithm (which changes scanning direction when no more requests are pending in the current direction) has 
been studied experimentally in [22] and analytically in [2].

A significant development in modern-disk scheduling was to also target the high costs owing to rotational delays. 
These algorithms [19, 8] attempted to minimize the sum of seek and rotational delays by favoring, for instance, the 
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request with the Smallest Positioning Time First (SPTF). Recently, disk controllers have been developed which can 
rearrange the order of submitted requests exploiting their detailed knowledge of the requested blocks’ positions and 
minimize seek and rotational delays [16].

1.1.2 Disk Scheduling Algorithms for Continuous Data Requests

The SCAN algorithm is inapplicable for continuous data requests since it is oblivious of deadlines. The Earliest 
Deadline First (EDF) algorithm [11] is a natural choice; however, it has poor performance since it does not attempt to 
reduce the overhead. SCAN-EDF [17] is a hybrid that serves requests in EDF order, but when several requests have 
the same deadline, they are served using SCAN. Most related recent research has adopted the notion of scheduling 
with rounds [1, 6, 7, 15, 20]. Each continuous data object (stream) is divided into blocks (also called fragments) such 
that the playback duration of each fragment is some constant time (typically, from one to a few seconds).

The round length represents an upper bound on the time in which the storage server must retrieve from disk the next 
fragments for all active continuous displays, or some displays will suffer a glitch. Within a round, it is possible to 
employ either a round-robin or a SCAN algorithm. The latter performs seek optimizations, resulting in better disk 
throughput. However, this is achieved at the expense of higher start-up latencies; the display cannot be started 
immediately after the retrieval of its first block but only after the end of the round. This is done to avoid glitches, 
since the service order differs from round to round. This limitation is not present when using round-robin scheduling, 
which also has lower RAM buffer requirements since it does not require the double-buffering scheme required by 
SCAN between successive rounds. A compromise was achieved with the Group Sweeping Scheduling (GSS) 
algorithm [22]. GSS groups streams and employs round-robin scheduling for the different groups and SCAN 
scheduling for the streams’ blocks in a group. Thus, when there is only one group GSS reduces to SCAN and when 
each stream is in its own group GSS reduces to round-robin.

1.1.3 Disk Scheduling Algorithms for Mixed Media Workloads

To our knowledge, the only works with some relevance to mixed-media disk scheduling are [17, 10, 12, 13, 14]. The 
work in [17] overviewed the performance goals for mixed workload scheduling, which are similar to ours, and studied 
only how some known algorithms for continuous-request scheduling, such as EDF and SCAN/EDF, affect the 
response time of discrete (or aperiodic, as they call them) requests. A simple scheduling scheme, called "the 
immediate server approach" [10] was employed for discrete requests, according to which discrete requests were 
served in between two successive EDF-selected continuous requests.

Since multimedia disk scheduling research has moved away from EDF-based algorithms, the works in [12, 13] 
attempted to analytically model and predict the performance of multimedia servers with mixed workloads, when 
scheduling is based on the notion of rounds. The work in [14] is a preliminary attempt to define the issues and present 
initial algorithms towards efficient mixed-media disk scheduling. The work reported in this paper is a continuation of 
our work in [13, 14]. We will present novel scheduling algorithms, which introduce drastic performance 
improvements. We will also define a taxonomy of related algorithms which we hope will be useful to designers, 
implementors, and researchers, in putting the problem and its prospective solutions in context.

1.2 System Model and Problem Definition

Our storage server receives a mixed workload consisting of continuous and discrete data requests. It employs an 
admission controller which bounds the number of admitted streams, given the availability of resources (such as RAM 
buffers, disk bandwidth, etc). We will also adopt the notion of scheduling with rounds, outlined above. In addition, 
the admission controller will reserve some subround period for discrete requests.

Within this framework, the problem at hand is to derive disk scheduling algorithms that will meet the following 
performance goals:

1. the displays of continuous objects observe no glitches,
2. discrete requests have small average response times
3. discrete requests do not starve, and discrete requests have a small response time variance.

The disk's workload consists of  concurrent continuous-data requests, C-requests, per scheduling round and also 
discrete-data requests, D-requests. In each round, the desired continuous blocks are known before hand (they are 
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simply the next blocks of the admitted streams). The requests for these blocks are in a waiting queue (C-queue). D-

requests arrive according to a Poisson process with rate  and enter their waiting queue (D-queue). In each round 
we aim to produce a schedule which meets the above performance goals.

2 MIXED-LOAD SCHEDULING: ALGORITHMS AND A TAXONOMY

The taxonomy categorizes the algorithms along two key dimensions:

1. The number of separate scheduling phases in a round. The algorithms are categorized as two-phase scheduling 
(TPS) algorithms when two separate schedules are produced, one for the C-requests and one for the D-
requests, and the phases are non-overlapping in time. One-phase scheduling algorithms (OPS) produce mixed 
schedules, containing both C- and D-requests. TPS algorithms are specified as

.
2. The number of scheduling levels. Hierarchical scheduling algorithms for D-requests will be presented. These 

algorithms are based on defining clusters of D-requests. At the higher level, the algorithms are concerned with 
the efficient scheduling of clusters. At the lower level, the algorithms are concerned with the scheduling of a 

cluster's requests. Hierarchical algorithms are specified as , where  and

are the algorithms used at the higher and lower levels, respectively.

In this paper for all algorithms we choose to serve C-requests according to the SCAN policy. The benefits of the 
SCAN policy are well known and widely adopted even for C-requests and leave little room for improvement. Thus, 
we will mostly concentrate on how to schedule the D-requests within the round's SCAN order for the C-requests.

2.1 Clustering and Hierarchical Scheduling

We define a C-interval as the disk interval between the disk cylinders of any two requested C-fragments that are 
successive in the current SCAN's direction. All D-requests belonging to the same C-interval form a cluster. 
Hierarchical scheduling algorithms in essence decompose the problem of scheduling all D-requests into the 
subproblems of deriving efficient schedules of, first, the clusters and, then, each cluster's requests.

We propose two lower-level scheduling algorithms. Their motivation is as follows. Given a non-trivial set of C-
requests, clustering results in a number of small C-intervals (such that any seek within the C-interval is a "short seek" 
[18]). Applying seek-optimizing algorithms (such as SCAN) in such small intervals (i) does not result in major 
savings, and (ii) focuses at the wrong overhead component. To give a concrete example, consider a disk drive with 
1500 cylinders and a set of 10 requested C-fragments, randomly distributed over the disk's surface. Any seek within 
the defined 150-cylinder-wide C-intervals will be a "short seek", the cost of which, given current technology, is only a 
few (e.g., less than six) milliseconds. However, in such drives the rotational delay can be significantly higher than the 
seek cost (e.g., up to 8 milliseconds, for the drives with the currently fastest rotating speed). Furthermore, the transfer 
time can actually be significantly higher than both of the above costs (e.g., a 200KB image in a disk with 10MB/sec 
transfer rate, requires a transfer time of 20 milliseconds). Given, as mentioned in the introductory section, the 
capabilities of modern disk controllers, further optimizations, such as the ones that follow, are possible.

The CI-SATF (C-Interval Shortest Access Time First) Algorithm

According to this algorithm:

1. The D-queue is partitioned into interval queues, one per C-interval. The D-requests are distributed to the 
appropriate interval queues.

2. Within each interval queue the D-requests are sorted according to their total disk access costs (seek, rotation, 
and transfer times).

3. CI-SATF serves D-requests according to their order in the interval queue.

The CI-OPT (C-Interval Optimal) Algorithm
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CI-SATF is a greedy algorithm, which may not produce optimal schedules. CI-OPT looks at all D-requests in the 
interval queue, considers all possible schedules, and determines the one with the minimum cost. It is well known that 
such optimality problems are reducible to the Traveling Salesman Problem (TSP) [4, 9]. For this reason, we place an 
upper bound on the number of cluster members, (e.g., five, thus leading to the CI-OPT(5) algorithm). According to 
this algorithm:

1. The interval queues are constructed as in CI-SATF, except that when one is to contain more than five D-
requests, it is recursively subdivided into two equal-sized queues.

2. The interval queues are then sorted in the order computed by CI-OPT.

The overall (hierarchical) algorithm serves the clusters of D-requests in some order (which in this paper is SCAN) and 
within each cluster (C-interval) serves the D-requests according to the order in the corresponding interval queue as 
produced by CI-SATF or CI-OPT(5).

In addition, before serving a D-request within a cluster, the algorithms check if there will be enough time to serve all 
remaining C-requests (using SCAN). If so, the D-request is served; else, it is postponed until the next round. Note that 
this check can rapidly be performed using the known detailed models for the seek cost, the rotational delays, and the 
transfer times.

2.2 Two Phase Scheduling

In two phase scheduling (TPS) schemes we serve C-requests and D-requests separately into disjoint time periods (C-
period and D-period) within each round. Each schedule can be produced by any known or novel algorithm. In this 

paper we will assume that at the beginning of each round a schedule for the  C-requests is constructed according 
to the SCAN policy, and then in the remaining time (until the end of the current round) the D-requests are served 
according to either the SCAN discipline or a hierarchical scheduling discipline. Thus, we will focus on

 and on , respectively. For the latter (hierarchical) algorithm, the clusters 
which will be visited in SCAN order during the second phase are defined as in the CI-OPT(5) algorithm, except that 
instead of a C-interval, the whole disk is considered.

2.3 One Phase Scheduling

In one phase scheduling schemes C-requests and D-requests are served together in an interleaved manner. D-requests 
that arrive during the service period of C-requests, do not necessarily have to wait until the end of that period. We 
propose and study the following one-phase scheduling algorithms.

FAMISH (Fair Mixed-scan ScHeduling)

D-requests are ordered in the D-queue based on their arrival time. FAMISH ensures that:

� All C-requests will be served within the current round.

� No D-request  will be served in an earlier round than , if  is ahead of  in the D-queue.

In particular, FAMISH will:

1. construct a SCAN schedule for the C-requests for this round.
2. incorporate the D-request at the head of the D-queue, in its proper position in the current SCAN schedule, and
3. calculate whether serving this SCAN schedule (which includes this D-request) will result in a hiccup for one 

or more C-requests in the SCAN.
4. if not, the iteration continues from step (2).
5. if so, the iteration stops, this D-request is removed from the current SCAN for this round and the requests in 
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the resulting SCAN are served.

In addition to , we will also consider the  and  algorithms.

3 EXPERIMENTATION AND PERFORMANCE RESULTS

3.1 Experimental Testbed

Our simulation results have been extracted by modeling a modern disk drive. The parameters of the disk drive are 
given in Table 1.
 

Cylinders  

Revolution Speed  

Rotation Time  

Number of Zones  

Transfer Time

1,449  

7,200 RPM  

8 ms  

1  

10 MBps

Table 1: Disk Characteristics

The seek time modeling as a function of the distance is given in Eq. 1 (for the HPC2200A drive).

 (1)

The rotational delay for each D-request is computed by keeping track of the starting disk sector within the cylinder 
containing the D-request. Given the constant angular velocity of the disk and the seek distances, along with the 
accurate seek cost model above, we can calculate which sector will be passing beneath the disk head at the end of the 
seek and thus compute the actual rotational delay. The transfer time is given from the disk’s transfer rate and the 
block size.

The C-requests sizes are Gamma distributed with mean 200000 bytes and standard deviation 100000 bytes. The 
values for C-requests reflect typical data characteristics for MPEG-1 data. The sizes of D-requests are typically 
smaller and obey a normal distribution with mean 70000 bytes and standard deviation 10000 bytes

The arrival of D-requests is driven by a Poisson process with arrival rate  and it is assumed that arriving D-
requests are uniformly distributed over the disk.

All simulations consist of five independent runs of 20,000 rounds each (which are enough for the algorithms to reach 
steady-state). During each run: the number of C-requests is held constant and the results for a specific performance 
metric are calculated with cumulative data. For example, the steady-state D-request average response time is obtained 
from the ratio of total response time of D-requests to the total number of serviced D-requests.
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Figure 1: The Mean Response Time of D-requests for N=10

The final value for a metric is calculated as the mean of that metric under the five runs

3.2 Performance Metrics

We measure the Mean Response time of the D-requests, as the sum of the request waiting time (in a queue) and its 
service time. The service time is the sum of the seek, rotation, and transfer time.

3.3 Results

We compare the performance of the above scheduling algorithms. All algorithms prevent glitches (all  C-requests 
are completed before the end of the round). The round's duration is set to one second. In Figure 1 we present the 

simulation results for the mean response time of D-requests for different arrival rates when . Serving 10 C-
requests per round according to the SCAN algorithm and without intermixing D-requests in intervals between 

successive D-requests, consumes about  of the total round time.

The major conclusions are that:

1.  has consistently the worst performance.

2.  performs worse than OPS algorithms for low and medium loads. But for very 

high loads it outperforms  in the average response time (and its variability, although not 
shown for space reasons). This emphasizes the usefulness of hierarchical scheduling: its local optimizations 
achieve smaller average response times, while the high-level fair scheduler ensures small variability around 
the mean.

3.  performs very well for low and medium D-request arrival rates. For heavier workloads the 
hierarchical OPS algorithms considerably outperform it.
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4.  and  perform better as the value of  increases since it gives a 

greater chance for the local optimizations to work. For heavier workloads (i.e., when

 is more than 250% worse compared to .

5. performs, as expected, better than  as  increases.

6. Although not shown, for space reasons, for , for some algorithms the system enters an unstable 
state. For instance, for  leaves at the end of the experiment more than 

2% of the D-requests "stranded" in the D-queue. For the other algorithms for  the "stranded" D-

requests are less than 1%. Again, the hierarchical algorithms enter into unstable states at greater values.

4 CONCLUSIONS

We have considered the problem of disk scheduling for mixed-media workloads. Despite the fact that such workloads 
are typical of many applications, related research efforts have largely overlooked this problem. We have presented 
several algorithms which aim to ensure the hiccup-free display of continuous objects, while ensuring low average 
response times and low response-time variance for discrete requests. We have contributed a taxonomy of related 
algorithms, organized along two key dimensions: the number of separate scheduling phases and the number of 
scheduling levels.

We have implemented the proposed algorithms in a detailed simulation testbed. We have shown that the hierarchical 
scheduling algorithms we propose can offer very drastic improvements, up to several hundred percent, in the average 
response times of D-requests. Also, these impressive response times do not occur at the cost of high response-time 
variance, thus achieving fair D-request schedules.

On-going work includes the design and evaluation of alternative clustering techniques for the hierarchical algorithms, 
alternative higher-level scheduling algorithms and efficient heuristics for TSP which can avoid the upper bound of 
five D-requests per cluster and replace the OPT(5) algorithm. Also, we plan to investigate to what extend similar 
hierarchical algorithms, in which the higher level algorithms effectively avoid starvation problems introduced by the 
lower-level optimizations, are suitable for (file-system or database-system) disk workloads.
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