
A Multimedia Information Server with Mixed Workload Scheduling

Guido Nerjes

Department of Computer Science, University of the Saarland, Germany
E-Mail: nerjes@cs.uni-sb.de, WWW: www-dbs.cs.uni-sb.de

Abstract
In contrast to specialized video servers, advanced

multimedia applications for tele-shopping, tele-teaching and
news-on-demand exhibit a mixed workload with massive
access to conventional, “discrete” data such as text
documents, images and indexes as well as requests for
“continuous data” such as video. This paper briefly
describes the prototype of a multimedia information server
that stores discrete and continuous data on a shared disk
pool and is able to handle a mixed workload in a very
efficient way.

1. Motivation
Advanced multimedia applications that make use of both

discrete data (text, html, graphics) and continuous data
(audio, video) include tele-shopping, tele-teaching or new-
on-demand applications. In contrast to specialized video
servers [1] and unlike conventional web servers, multimedia
information servers have to deliver both data types to the
clients. Furthermore, with unrestricted 24–hour world–wide
access over the Web, multimedia information servers have to
cope with a dynamically evolving workload where the
fractions of continuous–data versus discrete data requests
vary over time and cannot be completely predicted in
advance. Thus, for a good cost/performance ratio it is
mandatory that such a server operates with a shared resource
pool rather than statically partitioning the available disks and
memory into two pools for continuous and discrete data,
respectively.

Quality of service requirements for “continuous” data
like video and audio pose challenging performance demands
on a multimedia information server. In particular, the
delivery of such data from the server to its clients dictates
disk–service deadlines for real–time playback at the clients.
Missing a deadline may result in a temporary, but possibly
user–noticeable degradation of the playback that we refer to
as a “glitch”. Guaranteeing a specified quality of service
then means to avoid glitches or to bound the glitch rate
within a continuous data stream, possibly in a stochastic
manner (i.e., with very high probability) [3]. In addition to
the service quality guarantees for continuous data requests
(C-requests), quality–conscious applications require that the
response time of the discrete data requests (D-requests) stay
below some user–tolerance threshold, say one or two
seconds [6].

The prototype of the mixed workload multimedia
information server developed at the University of the
Saarland takes service quality requirements for both data
types into account and implements a novel disk scheduling
strategy that optimizes disk accesses. The prototype system

consists of three components that are briefly described in the
following sections.

2. Architecture of the Prototype System
2.1 Mixed-Workload Multimedia Information Server

The mixed workload server stores continuous and discrete
data objects on a shared disk pool. A continuous data object,
e.g., a video, is partitioned into fragments of constant time
length, say 1 second of display. These fragments are then
spread over the disks in a round–robin manner such that each
fragment resides on a single disk. Such a coarse–grained
striping scheme [2] allows a maximum number of concurrent
streams for a single object (regardless of skew in the
popularity of objects), while also maximizing the effective
exploitation of a single disk's bandwidth (i.e., minimizing
seek and rotational overhead). Furthermore, the fact that all
fragments have the same time length makes it easy to support
data with variable–bit–rate encoding (e.g., MPEG–2) and
simplifies the disk scheduling as follows. The periodic
delivery of the fragments of the ongoing data streams is
organized in rounds whose length corresponds to the time
length of the fragments. During each round, each disk must
retrieve those of its fragments that are needed for a client's
playback in the subsequent round. Not being able to fetch all
the necessary fragments by the end of a round is what causes
a glitch. On the other hand, since the ordering of the
fragment requests within a round can be freely chosen, the
disk scheduling employs a scan policy (also known as
“elevator” or “sweep” policy) that minimizes seek times.

In contrast, a discrete data object is placed completely on
a single disk. The mixed workload server schedules the
service of discrete data accesses within the rounds in a way
such that continuous data requests are not affected. The
scheduling strategy developed to this end is a mixed,
dynamic, incremental scan strategy [4,5]. This strategy mixes
C–requests and D–requests within a scheduling round and is
able to avoid glitches for the C–data streams by dynamically
limiting the number of D–requests that are served in a
scheduling round. This makes the best possible use of the
remaining disk time for good response time of D–requests.
Figure 1 illustrates this strategy in a simple scenario. The
timeline is split into three rounds of length T. Each box
shows the beginning and the end of a request execution. C-
requests are shown as striped boxes, D-requests as light
shaded boxes. The number in a box indicates the cylinder
number where the data resides on disk. Arrows above these
boxes indicate the arrival of a D-request; arrows below the
boxes show that a D-request has finished and leaves the
system. In each round there are two C-requests that must be
served. During the first round the D-request with the number

1 is dynamically inserted into the disk scan, since its position
on disk, i.e. its cylinder number 2067, is between the
cylinder numbers of the two C-requests. The global service
strategy across successive rounds is fcfs, within a round it is
scan. This is illustrated in the second round where two D-
requests, 3 and 4, are dynamically selected and inserted into
the scan. Request 4 is served ahead of request 3 because of
its position on cylinder 4012. D-request 5 is delayed until the
third round because there is only time for 2 discrete data
requests in the second round, and request 3 must be served
earlier because of the global fcfs selection between rounds.
The server is implemented in C++ with approximately 30K
lines of code, and runs on Solaris and Linux. Disks are
accessed using the block-based raw device interface of the
operating system. The server stores meta data, e.g., object
information and location of fragments on disk, permanently
in files of the host file system and loads this data at startup
into main memory for faster access. Measurements on a Sun
Enterprise Server under Solaris have confirmed the server’s
scalability.

We have also developed stochastic models for predicting
the performance and service quality (i.e., throughput, C-
stream glitch rate, D-request response time) for a given
server configuration (i.e., number of disks, etc.) [3,6]. These
models drive the server’s admission control for C-data
streams and are also key assets towards a configuration tool
for self-tuning servers.

2.2 Web Client for Content Access
The information server provides access to discrete data

using the http protocol. So for discrete data access a web
browser can be used that has built-in viewers for text, html
and graphical documents and has the capability to launch
external viewers for other media types. For video and audio
playback the prototype system uses the capability of modern
browsers to execute java programs. The Java Media
Framework (JMF) is a package that is installed on the client
and that allows to playback continuous media using java
applets running in a web browser. So the simultaneous
presentation of discrete and continuous data on the same web
page is possible. The playback applet is stored on the
information server and downloaded on-demand as a discrete
data object. The functionality of the applet is to provide a
user interface for the selection of video objects, to connect to
the information server and to store fragments temporarily in
a client buffer. The decoding of video or audio data and the
display of frames is done by the JMF framework whose API
is used by the playback applet. Figure 2 shows the
components of the playback applet. The user is able to stop,
to restart and to reposition within the continuous data stream.

2.3 Performance Monitoring and Visualization
The prototype system uses an external monitor to track

and visualize the scheduling activity of the mixed workload
server. It also shows the number of connected and active
continuous data client. Status changes are transmitted via a
permanent network connection from the server in near real-
time. The graphical representation of disk accesses along the
timeline on the right is similar to the representation in Figure
1. The left side of the monitor display shows the location of
disk requests between the inner and the outer cylinder of the
disk and the current position of the disk head. The monitor
program is implemented in Java, comprises approximately
three thousand lines of code, and runs in a separate process.

3. Demonstration
The demonstration shows the running prototype on two

laptops connected via Ethernet. One machine hosts the
mixed workload multimedia information server and the
monitor program and visualizes the disk scheduling of the
server. The other machine acts as a client and load generator,
and presents a web browser with a sample tourist-guide
application to the user. This application presents
multimedia html documents with embedded text, graphics,
and videos.

References
[1] Chung, S.M.: Multimedia Information Storage and
Management, Kluwer, 1996.
[2] Özden, B.; Rastogi, R., Silberschatz, A.: Disk Striping in
Video Server Environments, Proc. of the IEEE Intl. Conf. on
Multimedia Computing and Systems, Hiroshima, June 1996.
[3] Nerjes, G.; Muth, P.; Weikum, G.: Stochastic Service
Guarantees for Continuous Data on Multi-Zone Disks. Proc. of
the 16th Symp. on Principles of Database Systems, Arizona,
May 12-15, 1997.
[4] Nerjes, G.; Muth, P.; Paterakis, M.; Romboyannakis, Y.;
Triantafillou, P.; Weikum, G.: Scheduling Strategies for Mixed
Workloads in Multimedia Information Servers. Proc. of the 8th
International Workshop on Research Issues in Data Engineering,
Orlando, 1998.
[5] Nerjes, G.; Muth, P.; Paterakis, M.; Romboyannakis, Y.;
Triantafillou, P.; Weikum, G.: Incremental Scheduling of Mixed
Workloads in Multimedia Information Servers. To appear:
Special Issue of the Journal of MM Tools and Applications,
Kluwer
[6] Nerjes, G.; Muth, P.; Weikum, G.: A Performance Model of
Mixed-Workload Multimedia Information Servers. Proc. of the
10th German Conference on Performance Evaluation, Trier,
1999.

Figure 1: Dynamic and Incremental Scheduling

time

0 T 2T 3T

1

1

2

2

7

4

3 654

3 5

1243 6003 102 25235045480 40122067 7864 3525 820

Figure 2: Components of the Java Playback Applet

buffer

di
sp

la
y

M
ix

ed
−W

or
kl

oa
d−

S
er

ve
r

JM
F−

A
P

I

network

control

server connection

co
nt

ro
l

bu
tto

nscontrol

data
channel

MRL: sportvideo.mpg

JMF playback component

fill level

java playback applet

